
Swift BAT Ground Analysis Software Manual
Hans A. Krimm, Ann M. Parsons and Craig B. Markwardt
November 15, 2004
v2.0

FORWARD

This manual includes a description of the basic BAT FITS format data products, how
they are produced and how they are analyzed. It includes a discussion of how the
various BAT ground software tools are used. It is not intended to be a substitute for
the manual pages provided with each of the tools. The manual pages remain the
primary resource for the tools and the meaning and uses of their respective
command line parameters.

CHANGES FROM VERSION 1.0 OF THIS DOCUMENT

The document has been enlarged to include more details about the input and output
file formats and the parameters for each tool. Examples (recipes) have also been
added for most tools.

1

TABLE OF CONTENTS

I. INTRODUCTION..3

II. DESCRIPTION OF BAT DATA PRODUCTS...6

III. DESCRIPTION OF BAT ANALYSIS TOOLS...12

A. Batbinevt...13

B. Batcelldetect...23

C. Batclean..29

D. Batdph2dpi...34

E. Batdph2pha..35

F. Batdrmgen..36

G. Bateconvert...41

H. Baterebin..44

I. Batfftimage..46

J. Batgse2dpi (internal tool)...52

K. Bathotpix..55

L. Batid2xy..59

M. Batmasktaglc...62

N. Batmaskwtevt/ Batmaskwtimg..65

O. Batsumdph..71

P. Battblocks..72

IV. SAMPLE ANALYSIS CHAIN...81

2

I. INTRODUCTION

The BAT instrument is an imaging hard X-ray telescope, but it is not a focussing
instrument. Therefore the primary (Level 0) files are not sky images, but rather
images of the detector plane which must be processed (using a Fast Fourier
Transform) to produce images of the sky.

Furthermore, unlike the Swift Narrow-Field Instruments, BAT has only one
operating mode -- photon counting. Except when the event rate is too high for the
processor to keep up (for instance during passage of the spacecraft through the
South Atlantic Anomaly (SAA)), every photon is processed and becomes an “event,”
which has an associated time, detector number and energy. The events are stored in
a ring buffer (which can store approximately ten minutes of event data at our predicted
normal rate) and used to form gamma-ray burst triggers. Data throughput restrictions
prevent sending the event buffer to the ground continuously. The event buffer is
normally sent to the ground only following a detected gamma-ray burst. At all other
times, each event is added to one of 32768 eighty-channel histograms. The
histograms are accumulated for a time period that is normally five minutes and sent
to the ground as a Detector Plane Histogram (DPH). The DPHs are thus the primary
BAT data product and are used for ground-based transient searches and will be
combined to produce the All-Sky Map for the BAT hard X-ray survey.

Physical Description
The BAT instrument consists of two basic elements: the detector plane and the
coded mask. The detector plane consists of 32768 individual cadmium-zinc-telluride
(CZT) detector elements. Each detector is 4 mm X 4 mm X 2 mm thick and arranged
on a regular grid with 4.2 mm pitch. The detectors are arranged in the following
hierarchy: 128 detectors form a side and two sides make up a detector module.
There are eight detector modules in a block and sixteen blocks in the BAT array.
Gaps between detector modules are integral numbers (two or three) of detector
widths. The readout electronics includes digitization of the pulse height of each event
along with time tagging with a time resolution of 100 µsec. The detector identity of
each event is also reported. The only science output of the detector array is these
event files. The other two lowest level BAT products are calibration events and
housekeeping.

The coded mask (aperture) is located one meter above the detector plane. It
consists of ~51,000 lead tiles, each 5 mm X 5 mm X 1 mm thick, arranged on a grid in
a random pattern.

The effective energy range of BAT starts at approximately 15 keV and the
nominal energy resolution is 6 keV. The effective area peaks at around 100 keV and
falls off rapidly above that. Due to the 1 mm thickness of the lead tiles, the coded
mask is transparent to photons above about 200 keV, cutting off the effective area for
imaging at this energy. The overall effective area extends to above 1000 keV.

3

Overview of On-board Data Processing.
The BAT flight software runs as a set of interacting processing modules, which are
here described very briefly. The primary modules are data ingest (di), trigger (tg) and
calibration (ca). There are many other modules, including housekeeping and pulsar
folding, that are not discussed here. Nor does this document contain any discussion
of the Swift/BAT engineering software or low-level hardware interfaces.

Data ingest is the place in processing where event data from the array is
ingested and sorted and where the calibration appropriate for each detector is used to
convert from ADC channel to energy. The data ingest task fills the time-ordered event
ring buffer. One of its most important tasks is binning the data, both to produce the
Detector Plane Histograms and for the trigger process. The various rate files are also
filled in this process.

The trigger process is central to the scientific mission of Swift. The basic
procedure for rate triggers is as follows. Data is continually binned by the data ingest
process into rolling time-based histograms (light curves) with time bins ranging from
4 ms to 16 seconds. Different histograms are accumulated for four energy bands
(nominally 15-25 keV, 25-50 keV, 50-100 keV, and 100-350 keV) and for nine regions
of the detector plane: the entire array, the four quadrants, and four halves (two halves
sliced in different directions). The trigger process continually monitors the hundreds
of histograms searching for rate increases in any of them. When a significant
(typically 5-7 sigma) rate increase is found, the image processing software produces
a sky image from the events in the high rate bin. It then subtracts a scaled
background sky image from several seconds earlier. If a significant point source is
found in the background subtracted image, then a final check is done to make sure
the point source is not at the location of a known hard X-ray source. If the source is
verified as new, it is reported as a burst and a message is sent to the spacecraft
Figure of Merit (FoM) processor to initiate the Swift burst response.

The other part of the trigger process is the image trigger. In this mode, images
are continually made on time scales ranging from sixty seconds to the duration of a
pointing (snapshot). These images are searched for significant point sources which
can also be reported to the FoM as bursts.

The calibration task typically runs during slews to pre-planned targets. There is
a calibration pulser built in to the BAT hardware which can inject a known voltage into
each detector in sequence. The calibration task has access to a lookup table (which
can be updated from the ground) containing conversions from pulser voltage to
energy. The task convolves the table with the ADC channel reading for each pulse in
each detector to derive a conversion from ADC channel to energy. One point per
detector is needed to derive an offset and two are needed to derive a gain. These
offsets and gains are used in the data ingest task and are reported to the ground as
calibration products.

Mask Tagging
Mask tagging is a technique for subtracting background from an event file or detector
plane array in a coded aperture telescope. The technique takes advantage of the fact
that background counts are randomly distributed across the detector plane, while

4

counts for a particular source fall in a calculable pattern. The mask tagging process
involves forward projecting (ray tracing) photons from a known position in the sky
through the coded mask onto the detector plane.

Mask tagging can either be applied to an event file (applied to event files with
batmaskwtevt) or to a detector plane image (done in the flight code and in
batmaskwtimg). In event tagging, for each event a single ray is traced from the
source location to the particular detector in the event. The event is given a weighting
from -1.0 to +1.0 based on the fraction of the detector that is shadowed by lead tiles. If
the detector is fully shadowed it receives a weight of -1.0. If it is fully open it gets a
weight of +1.0 and if half-shadowed, a weight of 0.0. Counts in the detector plane not
coming from the source will receive weights averaging to zero. Counts coming from
the source will only fall in open or partially open detectors and hence will receive a net
positive weight. If the events are then binned into light curves based on their mask
tagged weighting, the result will be a light curve that represents the net counts from
the source.

Detector plane mask weighting is similar, but in this case, a ray is traced from
the source to each of the 32768 detectors, each of which is given a weight. This
technique is used for cleaning (see batclean) and is used in the flight processing to
create a lookup table of weights which are applied to each event.

Overview of Data Products
There are many different Level 0 BAT data products, but they can be arranged into
seven broad categories: (1) Event files, (2) Detector Plane Histograms, (3) Rate files,
(4) TDRSS messages, (5) Calibration files, (6) Housekeeping, and (7) Diagnostic (or
trend) data. The scientific user will typically only be concerned with the first four
categories and those calibration files needed for analysis. The data in these seven
categories are described in detail in the next section. In addition, the Science Data
Center pipeline produces spacecraft attitude files and filter files, and there exists a
Swift/BAT calibration database. In later sections, these files are described only to the
extent necessary to use them in data analysis.

5

II. DESCRIPTION OF BAT DATA PRODUCTS

All BAT data products are FITS files. The Level 0 and 1 products are either FITS tables
or null files (header only). All files are named according to one of the following
conventions (“sw” is Swift and “b” is BAT):

sw[Observation ID][Segment Number]b[code].[suffix]

-or-

sw[Time stamp]b[code].[suffix]

For example, an event file for Observation ID 00074651, segment 002, would have a
name sw00074651002bevtstouf.evt, where the code for event files is “evtstouf” and
the suffix is “evt.” Similarly, a long trigger criteria trend file from MET 101809021
would have a name sw0101809021btblt.fits, where the code is “tblt” and suffix “fits.”

This document will give only those codes and suffixes which apply to files
being described in the document. A much more complete description of the BAT data
products along with an exhaustive list of codes and suffixes, and the logic behind the
codes, can be found in the document “BAT Data Products.” The current version of that
document is Version 3.1, 30 August 2004, by Hans Krimm.

A. Event Files

These are time-ordered FITS tables, with each row corresponding to a single event. A
fully processed event file will contain no duplicated events. Event files can be
distinguished by the unique filename suffix “evt,” and various codes refer to different
types of events and different stages in processing.

The columns in a fully processed event file are:

HDU 2 EVENTS BinTable 8 cols x XXXXX rows

Col Name Format[Units](Range) Comment

1 TIME 1D [s] TIME associated with event
The time is reported in Mission Elapsed Time (MET), which is seconds from January
1, 2001.

2 DET_ID 1I Detector Channel, DM, Side and Block
This defines the location of the detector in the BAT electronics hierarchy. The result is
a single integer between 0 and 32767. The coding is:

(2048 * Block) + (256 * DM) + (128 * Side) + (Channel).
0 ≤ Block ≤ 15 ; 0 ≤ DM ≤ 7; 0 ≤ Side ≤ 1; 0 ≤ Channel ≤ 127.

3 EVENT_FLAGS 1B DM Event Flags

6

4 PHA 1I [chan] (0:4095) Raw Pulse Height
5 PI 1I [keV] Pulse Height Invariant Quantity
This column is filled by ground processing (bateconvert) using the gain/offset
calibration files. If this column has not been filled it will be absent.

6 MASK_WEIGHT 1E (-1.0:1.0) label for field
This is the weighting applied to each event (using batmaskwtevt) based on the
location in the BAT field-of-view of a given source. Since event data is typically only
downloaded for the time around a burst, this source is usually the burst. See
discussion of mask weighting in the introduction. If this column has not been filled it
will be absent.

7 DETX 1I (0:285) BAT X coordinate
8 DETY 1I (0:172) BAT Y coordinate
The values in these columns give the geometric location of the detector producing
each event. The geometric coordinates include gaps between detector modules so
this space includes 286 X 173 = 49,478 positions of which 32,768 are filled by
detectors. The mapping between (DETX, DETY) and DET_ID is quite complicated
and can be done using the tool batid2xy.

Event files also include a Good Time Interval (GTI) extension giving the time spanned
by events in the file.

B. Detector Plane Histograms

These files are the other primary science data product (along with event files). The
bulk of the BAT data volume is Detector Plane Histograms (DPHs). Survey DPHs
have suffix “dph” and are distinguished by the code “sv.” A typical file name also
includes the gain/offset indices associated with the survey. For example, the file
sw00074651000bsvo0002g0001.dph, would be for Observation ID 00074651,
Segment 000, Offset index 0002 and gain index 0001.

The columns in a Detector Plane Histogram are:

HDU 2 BAT_DPH BinTable 11 cols x XXX rows

Col Name Format[Units](Range) Comment

1 TIME 1D [s] TIME associated with DPH
2 EXPOSURE 1D [s] Exposure of the histogram
3 DPH_COUNTS 3958240I [count] Detector Plane Histogram
This is a three-dimensional data cube with 80 x 286 x 173 elements. The first
dimension corresponds to the number of energy channels and can be varied, but will
almost always be 80 for BAT surveys. The second and third dimensions indicate the
geometric location of the detector in the BAT array plane. Since these dimensions

7

include gaps between DMs, approximately one third of the table is empty (filled with
zeros).

4 DATA_FLAGS 1I Data Quality 0=OK, 1=Problem
5 GAIN_INDEX 1J Gain used in DPH
6 OFFSET_INDEX 1J Offset used in DPH
7 LDPNAME 240A15 BAT File Name
8 BLOCK_MAP 1I Block Bit Mask
9 NUM_DETS 1J Number of detectors
10 APID 1I data came from ApID
11 LDP 1I data came from LDP number

The remaining columns 4-11 are mostly for bookkeeping and trend analysis, but the
data could be filtered on some of these values.

The arrangement of data in the data cube was determined to maximize speed of filling
the cubes from the flight data products. A consequence is that the data cannot easily
be visualized with tools like fv. Two BAT tools, batdph2dpi and batdph2pha render
the data cubes into, respectively, a single Detector Plane Image or 32768 detector
spectra.

The DPH FITS files also include an EBOUNDS extension specifying the energy
bounds of the histogram channels. There is also a GTI extension.

C. Rate Files

There are six types of rate files (light curves) produced by the BAT. Five of these are
produced in final form as Level 0 products. One of them (mask-tagged light curves)
requires further processing in the SDC pipeline using batmasktaglc.

The rate files are 1-second rates, quad rates, 64 msec rates, max rates,
masktagged
rates and burst light curves. The first five types are produced at all times when
the data ingest task is running. The last type (burst light curve) is only produced in
response to a burst. All rate files have suffix “lc”

1. One-second rate files (code “rt1s”) are single channel light curves representing the
total count rate in the BAT array as a function of time. Time binning is one second.
Since this file is derived from a hardware counter it continues to record the total BAT
event rate even when the data ingest task is turned off (during SAA passage, for
instance) and includes all events without any energy cuts.

2. Quadrant rates (code “rtqd”) contain four channel light curves for each of four
quadrants of the BAT array. Time binning is 1.6 seconds and what is recorded is
counts (not counts/second). The four channels correspond to the four nominal energy
bands used in the trigger task. (15-25, 25-50, 50-100,100-350 keV). Events with

8

energies < 15 keV or > 350 keV are not included in these rates. The four quadrants
are Blocks 0-3, 4-7, 8-11 and 12-15. These rates do not appear if the data ingest task
is not running.

3. 64-msec rates (code “rtms”) contain a single four channel light curve giving the
counts in the entire array with 64-msec time binning. The energy ranges are the
same as for the quadrant rates. What is reported is counts (not counts/second).

4. Max rates (code “rtmc”) have five HDUs (plus a GTI extension). Each extension
contains nine four-channel light curves with eight second time binning. The nine light
curves in each extension correspond to the full array, the four quadrants (described
under quadrant rates above) and four halves. The halves correspond to all possible
adjacent pairs of quadrants, namely quadrants 0 &1, quadrants 0 & 2, quadrants 1 &
3, and quadrants 2 & 3. The five light curve extensions are:

HDU 2 MAX_COUNTS_04MS BinTable 11 cols x XX rows
HDU 3 MAX_COUNTS_08MS BinTable 11 cols x XX rows
HDU 4 MAX_COUNTS_16MS BinTable 11 cols x XX rows
HDU 5 MAX_COUNTS_32MS BinTable 11 cols x XX rows
HDU 6 MAX_COUNTS_64MS BinTable 11 cols x XX rows

The light curves contain, for each eight second time bin, the maximum counts on the
given time scale within those eight seconds. For example, regard the
MAX_COUNTS_04MS extension. There are 2000 4-ms intervals within eight seconds.
What is reported in the file is the number of counts in the 4-ms interval with the
highest number of counts (in other words, the peak of the 2000 bin light curve). The
same algorithm is used for the other four time scales.

This light curve is mostly used for diagnostics.

5. Mask -tagged light curves (code “mt”) are typically produced for three sources in the
BAT field of view. In most cases, one source will be the burst being followed-up and
the other two sources will be bright variable sources also in the field of view. The
flight code weights each event for each source position (see “Mask Tagging” above)
and bins the weighted events into light curves with 1.6 second time binning and four
channel energy binning.

In order to reduce the time needed for mask tagging in flight, the weights are
offset and scaled and the mask tagged light curves produced in flight are convolved
with the quadrant rate files. All of this must be backed out in ground processing using
the batmasktaglc tool. This tool reads in the raw mask tagged light curve, the
corresponding mask weight file, and the quadrant rate file covering the same time
period. It outputs a corrected mask tagged light curve with an EBOUNDS extension.

The raw light curve has only time and weighted counts columns (in four
channels). The processed light curve has columns: TIME, RATE (counts/sec),
ERROR (counts/sec) and BACKV (counts/sec). The last column is the background.

9

6. Burst light curves (code “msb” or “bhp”) are sent down in two channels, through
TDRSS and in the high priority solid-state recorder ground pass channel. These files
cover a time from 24 seconds before to 185 seconds after the burst. They have four
energy channels. The time binning varies and is densest (0.128 seconds) closest to
the trigger time and least dense (4.096 seconds) well after the trigger. Since these
light curves come through the TDRSS channel they can be used to quickly determine
high level burst properties.

The TDRSS light curves also have attitude data attached on the same time
scale as the light curves. The attitude data is processed into separate files.

D. TDRSS Messages

In addition to the burst light curves (previous section), there are four TDRSS
messages produced by the BAT. These are the burst alert (code “msbal”), burst
position (ACK) (code “msbce”), no-position (NACK) (code “msbno”) and scaled maps
(code “msbsm”). All rate triggers generated a burst alert. If no position is found,
then a burst NACK follows. If a position is found, then a burst position message
follows along with a scaled map. In either case (position or no position), a scaled
map is sent down in the ground pass.

The burst alert, position and NACK messages are Null Arrays with all
information contained in the header.

Scaled maps are detector plane images with a single number for each detector
representing the counts in that detector during the time interval used to produce the
image of the burst. Other columns contain diagnostic information about the burst.

E. Calibration Files
These include the files listed here.

1. Americium tagged source surveys (code “cbam,” suffix “dph”). Tagged calibration
source events are segregated from normal events and binned in separate DPHs.
The format is the same as the normal survey DPH, but the duration is much longer
(typically 90 minutes). And since the tagged source position is fixed with respect to
the detector plane, Am241 surveys can span pointings. These are used by the BAT
team to derive the absolute energy calibration of the experiment.

2. Americium block spectra (code “cbam,” suffix “fits”) are eighty-channel histograms
of tagged source events reported for each of the sixteen blocks. These are produced
on the same time scale as the normal surveys (as opposed to Am241 surveys).

3. Calibration maps (code “cb_ “ suffix “dph”) contain the raw results from the pulser
calibration runs used in on-board calibration. They are used by the BAT team to check
the on-board calibration. Also if a series of more than two calibrations is
commanded, the resulting calibration maps can be used to determine the non-
linearity of the energy calibration.

10

4. Enable/disable maps (code “cbde,” suffix “fits”). These files contain a flag (0 or 1)
for each detector indicating whether the detector is enabled or disabled in the flight
processing. They are generated whenever additional detectors are disabled and
during slews to bursts.

5. Gain/offset maps (code “cbo,” suffix “dph”). These files contain two detector plane
maps giving the offset [keV] and gain[keV/channel] used in the flight code to calibrate
the events. These are generated each calibration cycle (normally slews to pre-
planned targets)

F. Housekeeping Files
These include engineering housekeeping files and the Detector Plane Array (DAP)
housekeeping file which includes all “science” housekeeping from the BAT array.

G. Diagnostic and Trend Files
These include tables of Data Ingest (DI) commandables as well as tables listing the
short and long trigger criteria and the trigger veto criteria. Other files in this category
are the on-board source catalog, running sums tables for triggers, and tables giving
diagnostics for rate and image triggers. The data log (shell file) is also included in
this category.

11

III. DESCRIPTION OF BAT ANALYSIS TOOLS

This section gives an overview of each of the BAT analysis tools and examples of how
they are used. The tools are listed in alphabetical order.

Very Brief Overview of Tools

(Note that DPH = Detector Plane Histogram, as described in the previous section)
batbinevt: makes light curve or spectrum from event file; also processes DPHs.
batcelldetect: finds both new and previously cataloged sources in image files.
batclean: cleans the background and (if desired) sources from BAT DPHs.
batdph2dpi: collapses DPH into a detector plane image.
batdph2pha: rewrites a DPH in the form of 32K individual detector spectra.
batdrmgen: creates a BAT detector response matrix for a given source location.
bateconvert: determines the energy (PI) from the ADC channel (PHA) in an event file.
baterebin: corrects DPH for non-linearity in the conversion from channel to energy.
batfftimage: derives a sky image from a DPH or makes a partial coding map.
batgse2dpi: internal tool to convert calibration data into flight-like format.
bathotpix: derives a map of hot (noisy) and cold pixels in the detector plane.
batid2xy: converts to and from detector order to geographic location in the array.
batmasktaglc: processes the raw masked tagged light curves from the flight data.
batmaskwtevt: calculates mask weighting for an event file.
batmaskwtimg: derives a mask weighting map for a particular sky location.
batsumdph: combines multiple DPHs.
battblocks: determines burst duration, peak flux, and interesting time intervals.

Common Parameters

In addition to tool specific parameters which are described below in the section for
each individual tool, all FTOOLs have the following hidden parameters which are
described here:

If history = YES, then a set of HISTORY
keywords will be written to the header of the
specified HDU in the output file to record the
value of all the task parameters that were used to
produce the output file.

 (history) = YES [boolean]

Controls the amount of informative text written
to standard output.

 (chatter) = 2 [integer, 0 - 5]

If the output file already exists, then setting
"clobber = yes" will cause it to be overwritten.

 (clobber) = NO [boolean]

 DescriptionParameter / Default / Data Type

12

A. Batbinevt

This is a multipurpose tool which produces spectra and mask weighted light curves
from BAT event files and detector histogram data. This tool can use the weights
generated by batmaskwtevt or batmaskwtimg to make binned output light
curves and spectra. It can also be used to add DPHs and collapse them (produce
Detector Plane Images or DPIs).

Input Files (batbinevt):

Hidden parameters are listed in parentheses. If these are required, then the code will
use default values.

Required:
infile: Input file name containing a sky map. The input file must be either an
event file or a DPH.

Event data must have the TIME and energy columns. If weighting is
applied, then either the MASK_WEIGHT column must be present, or a
separate mask weight image file must be supplied. An input event file must
normally have been processed first by batmaskwtevt for a particular source
position. Thus, batbinevt will only extract products for one source at a time,
although it can compute many time or energy samples.

Batbinevt can also read detector plane histograms (DPHs). BAT DPHs
have two spatial dimensions and one energy dimension. They are produced
by the BAT flight software, and also perhaps previous runs of batbinevt. They
must contain an EBOUNDS extension which describes the energy bin edges.

Optional:
(gtifile): Name of goodtime interval file. The user-supplied GTI file is logically
intersected with the good times of the input files (i.e. only overlap portions
are used). The default of NONE implies that all good time intervals from the
input files will be used.

(detmask): Name of a detector quality map file. This should be an image file
with the same dimensions as the detector plane map. A pixel value of 0
indicates the detector is enabled for imaging, and a non-zero value indicates
disabled. A default value of NONE implies all detectors are on, except for the
BAT detector gap regions.

Output Files (batbinevt):

Required:
outfile: The output file types are either LC (light curve), PHA (counts spectrum),
DPH or DPI. The most common output file types will be:

13

 LC
 Standard OGIP light curve (default: weighted=yes, outunits=RATE);

PHA
 Standard OGIP spectrum (type II; default: weighted=yes,

outunits=RATE);

batbinevt can also output histograms and images:

 DPH
 Detector plane histogram; for each temporal integration, a three

dimensional histogram of the number of counts is constructed with two
spatial dimensions (DETX and DETY) and one energy dimension. The
EBOUNDS extension describes the energy binning. (default: weighted=no,
outunits=COUNTS);

 DPI
 Detector plane image; a histogram of the number of counts in two

spatial dimensions (DETX and DETY). Each FITS extension contains only
one DPI; multiple images are stored in sequential FITS extensions.
(default: weighted=no, outunits=COUNTS);

 DPITAB
 Detector plane image. Images are stored in rows of a FITS binary table

(multiple images in one extension) The data is identical to the “DPI” option;
only the FITS format is different. (default: weighted=no, outunits=COUNTS).

Parameters (batbinevt):

Hidden parameters are in parentheses and need not be supplied on the command
line. There are three additional parameters common to all FTOOLs which are
described at the beginning of this section. The brief descriptions of the parameters
given here are for reference only, for a full discussion of what the parameters do and
what values they can take refer to the online help (fhelp) for this tool.

The table is found on the next page.

14

Size of internal event buffer for processing. (buffersize) = 32768 [integer]

Name of MASK_WEIGHT column (event data). (maskwtcol) = "MASK_WEIGHT"

Name of XYcolumn in input file (event data). (ycol) = "DETY" [string]

Name of X column in input file (event data).

Name of counts column column in input file

Name of TIME column in input file.

 Name of a detector quality map file.

For the constsnr binning method, the signal to
noise ratio to require for each time bin.

Stop time of the accumulation, in seconds (MET).

Start time of the accumulation, in seconds,
expressed in Mission Elapsed Time (MET).

Mask weight map file.

Set to RATE, COUNTS or INDEF, whether the
output histogram units should be "count/s",
"count", or automatically determined (INDEF).

Set to boolean yes or no,depending on if mask
weighting should be applied to binning operation.

Column name to use for the energy value.

Name of goodtime interval file.

Energy bin ranges, expressed as a comma-
separated list of floating point number ranges, a
file name containing energy bin ranges, or CALDB.

 "uniform", for uniform binning
 "snr", for constant signal to noise ratio
 "gti" for binning according the GTI file
 "infile" to mimic the input file binning

Select a time bin size, in seconds.

Chooses output format :
light curve (outtype="LC")
spectrum (outtype="pha")
detector plane histogram (outtype="DPH"),
detector plane image (outtype="DPI")
detector plane image table (outtype="DPITAB").

Output light curve or spectrum file name.

Input file name containing BAT event or DPH data.

 (xcol) = "DETX" [string]

 (countscol) = "DPH_COUNTS")

 (tcol) = "TIME" [string]

 (detmask) = "NONE" [string]

 Description of batbinevt parameter Parameter / Default / Data Type

 (snrthresh) = 6.0 [real]

 (tstop) = INDEF [string]

 (tstart) = INDEF [string]

 (maskwt) = NONE [string]

 (outunits) = INDEF [string]

 (weighted) = INDEF [string]

 (ecol) = PI [string]

 (gtifile) = NONE [string]

 energybins = "-" [string]

 timebinalg = uniform [string]

 timedel = 1.0 [real]

 outtype [string]

 outfile [filename]

 infile [filename]

15

Further discussion of selected parameters for batbinevt:

WEIGHTED or UNWEIGHTED? (parameter: weighted)

Applying mask weighting is equivalent to background subtraction. Detectors which
are fully shadowed are assigned a -1 weight. Fully illuminated detectors a +1 weight,
and partially illuminated detectors are assigned an prorated value. Thus, a
weighted sum of the counts will automatically subtract the background.

Each output format, by default, is either weighted or not.
 * light curves and spectra are weighted by default;
 * histograms and detector images are not weighted by default.

Users can choose to change the default by setting weighted to "yes" or "no."

For event data, the default is to take the mask weighting values for each event from
the MASK_WEIGHT column. This can be overridden by using the maskwt
parameter, which gives a mask weight map to be used for all events. [This
parameter should not be used for event data taken during slews.] For DPHs, the
mask weighting is also specified using the maskwt parameter.

TIME BINNING (parameter: timebinalg)

The user can choose how to bin the data in time. For "uniform" binning, a non-
zero time bin size indicates that every time bin should have this same size. A zero time
bin size indicates that all input data should be summed into a single output time bin.

For "gti" binning, the user specifies the name of a file containing the desired good
time interval bins using the gtifile parameter, which is in the standard GTI format.
Adjoining good time intervals are not merged when using this method. The timedel
bin size is ignored.

For "snr" binning, the user specifies a desired signal-to-noise ratio with the snrthresh
parameter. When the total signal to noise ratio for a given time bin exceeds the
threshold, a new bin is started. The timedel bin size is taken as the maximum bin
size before a new bin is started; if timedel=0 then there is no maximum.

The "infile" binning method only applies when the input is a DPH. When the binning
algorithm is set to "infile," then the time binning of the input file is preserved in the
output file. This may be useful, for example, if each DPH row is to be flattened into a
detector image, while otherwise preserving the individual exposures.

16

TIME SELECTION (parameters: tstart, tstop, gtifile)

By default, the input file is selected according to its own internal good time intervals,
if any are present.

Crude time selection can be performed using the tstart and tstop parameters to the
task, which give the start and stop times of accumulation.

More refined selections can be performed specifying the gtifile parameter. A
good time interval file (GTI) describes an arbitrary number of intervals by
specifying the start and stop times. The intersection of the input files' GTIs, the user-
provided gtifile, and the user-provided tstart/tstop parameters, are used to select
input data by time.

Examples (batbinevt):

1. Accumulate detector plane images

To calculate the final DPIs for different times and energy bands, the appropriate
batbinevt command is:

batbinevt infile.evt outfile.dpi DPI 0 u energybins = "15-25,25-
50,50-100,100-350" detmask=qual_map ecol=ENERGY weighted=NO
outunits=COUNTS

where infile.evt is the name of the input event file
(event_rw/sw00100139000bevshpsuf.evt) outfile.dpi is the name of the
output detector plane image file (event_rw/output/sw00100139000_4.dpi) and
qual_map = event_rw/output/ sw00100139000.mask. To make this dpi file we
type:

my_computer> batbinevt event_rw/sw00100139000bevshpsuf.evt
event_rw/output/sw00100139000_4.dpi DPI 0 u energybins = "15-
25,25-50,50-100,100-350" detmask =
event_rw/output/sw00100139000.mask ecol=ENERGY weighted=NO
outunits=COUNTS
**
 batbinevt v1.5
--
 Input Events: event_rw/sw00100139000bevshpsuf.evt
 Output File: event_rw/output/sw00100139000_4.dpi (DPI)
 Detector Mask: event_rw/output/sw00100139000.mask
 Time Range: 108578897.000000 to 108579231.691780 (requested)
 Time Range: 108578897.000000 to 108579231.691780 (actual)
 Apply Weighting?: NO Energy Column: ENERGY
 Energy Bins: 15-25,25-50,50-100,100-350
 Output Units: COUNTS

17

 Binning Method: UNIFORM
 Time Bin Size: 0.000000 (s)
--
 DPIs written to event_rw/output/sw00100139000_4.dpi
 EBOUNDS written to event_rw/output/sw00100139000_4.dpi
 Number of Rows Processed: 281584
 Number Accepted/Rejected: 245047/36537
 Time Bins: 1 Energy Bins: 4
--
my_computer>

and a new file is created in the event_rw/output directory: sw00100139000_4.dpi
which has four BAT_DPI extensions corresponding to the four energy bins we defined.
There is also an EBOUNDS extension that gives us the energy bin edges.

Note: the “bevshpsuf” file name code indicates that this event file contains the
data taken before the slew. Similarly, the file name codes “bevshsluf” and
“bevshpouf” indicate data taken during the slew and after the slew, respectively. Thus
if you also wanted to make DPI’s for data taken during the slew and post-slew, you
would use infile.evt = event_rw/sw00100139000bevshsluf.evt and
infile.evt = event_rw/sw00100139000bevshpouf.evt in your call to
batbinevt.

2. Extract Spectra

With an appropriate choice of parameters, batbinevt can be used to extract spectra
from an event file. When the outtype parameter is set to “PHA,” a single spectrum is
produced for each specified time interval. The output pha file is a standard OGIP
spectrum file (type II; default: weighted=yes, outunits=RATE.)

By default, spectra are created using mask weighting which is equivalent to
background subtraction. This is described in the first section of this document. The
time interval(s) used for making spectra are, by default, selected according to the
input file’s own internal good time intervals, if any are present.

The basic form of batbinevt used to create spectra from event data is given below:

batbinevt infile.evt outfile.pha PHA timedel=0 timebinalg=u
energybins=ebounds.file

where infile.evt is the input event file (for example infile.evt =
event_rw/sw00100139000bevsh psuf.evt) and we’ll define outfile.pha as
event_rw/output/sw00100139000_preslew.pha. If time binning is uniform (i.e.
timebinalg=u), then a value of timedel=0.0 causes the tool to accumulate all data into
a single time bin for each selected time interval.

The energy bins can be specified in the command line by either an ASCII list or by
setting energybins=ebounds.fits where the energy bins are given by the EBOUNDS

18

extension in ebounds. For example, if the file ebounds.file contains an 80 row
EBOUNDS HDU, then the output would be an 80-channel PHA file with a single time
bin.

ASCII energy bin edges can be written on the command line as in
this example:

my_computer>: batbinevt event_rw/sw00100139000bevshpsuf.evt
event_rw/output/sw00100139000bevshpsuf.pha PHA 0 u 15-20,20-25,25-
30,30-35,35-40,40-45,45-50,50-55,55-60,60-65,65-70,70-75,75-80,80-
85,85-90,90-95
**
 batbinevt v1.5
--
 Input Events: event_rw/sw00100139000bevshpsuf.evt
 Output File: event_rw/output/sw00100139000bevshpsuf.pha (PHA)
 Detector Mask: NONE
 Time Range: 108578897.000000 to 108579231.691780 (requested)
 Time Range: 108578897.000000 to 108579231.691780 (actual)
 Apply Weighting?: YES Energy Column: ENERGY
 Energy Bins: 15-20,20-25,25-30,30-35,35-40,40-45,45-50,50-
55,55-60,60-65,65-70,70-75,75-80,80-85,85-90,90-95
 Output Units: RATE
 Binning Method: UNIFORM
 Time Bin Size: 0.000000 (s)
--
 Spectrum written to event_rw/output/sw00100139000bevshpsuf.pha
 EBOUNDS written to event_rw/output/sw00100139000bevshpsuf.pha
 Number of Rows Processed: 281584
 Number Accepted/Rejected: 133601/147983
 Time Bins: 1 Energy Bins: 16
--
my_computer>

A more elegant way to enter energy bin edges is to supply a FITS file with an
EBOUNDS extension that contains the energy bin edges. The format of this extension
is 3 columns x N rows (N being the number of energy bins.) The columns have the
following names: CHANNEL, EMIN, and EMAX and contain the row number, the
minimum energy for the bin, and the maximum energy for the bin. Suppose the file
“ebounds.fits” with 80 bin edges has been placed in the bat subdirectory

batbinevt event_rw/sw00100139000bevshpsuf.evt
event_rw/output/sw00100139000bevshpsuf_2.pha PHA 0 u
energybins=ebounds.fits
**
 batbinevt v1.5
--
 Input Events: event_rw/sw00100139000bevshpsuf.evt
 Output File: event_rw/output/sw00100139000bevshpsuf_2.pha(PHA)
 Detector Mask: NONE

19

 Time Range: 108578897.000000 to 108579231.691780 (requested)
 Time Range: 108578897.000000 to 108579231.691780 (actual)
 Apply Weighting?: YES Energy Column: ENERGY
 Energy Bins: ebounds.fits
 Output Units: RATE
 Binning Method: UNIFORM
 Time Bin Size: 0.000000 (s)
--
 Spectrum written to event_rw/output/sw00100139000bevshpsuf_2.pha
 EBOUNDS written to event_rw/output/sw00100139000bevshpsuf_2.pha
 Number of Rows Processed: 281584
 Number Accepted/Rejected: 278504/3080
 Time Bins: 1 Energy Bins: 80
--

3. Extract light curves

Although we’ve already used the batbinevt tool to extract spectra from event files and
to make detector plane images and histograms, batbinevt can also be used to extract
light curves from event files. When the outtype parameter is set to “LC,” a BAT light
curve is generated for the energy intervals and time binning as specified by the user.
The form to use for generating light curves is:

batbinevt infile.evt outfile.lc outtype= LC timedel timebinalg
energybins [detmask = quality.mask]

By default, the time interval for the light curve is selected according to the input file’s
internal good time intervals, if any are present. Crude time interval selection can be
performed using the tstart and tstop parameters, which give the start and stop times of
accumulation. Batbinevt also allows the user to specify his own time intervals by
setting the parameter gtifile = newgtifile.fits. The time binning for the light curve within
the selected time interval(s) is controlled by the timedel and timebinalg parameters.
The user can select the time bin size in seconds with the timedel parameter. Note that
If time binning is uniform, then a value of timedel=0.0 causes the tool to accumulate
all data into a single time bin. This is fine if you’re extracting spectra, but it will give you
a very boring light curve with only one bin! Timebinalg defines the mode for time
binning. If timebinalg = uniform (or u) the chosen time interval(s) are divided into bins
of equal duration. There are other time binning modes such as "snr", for a constant
signal to noise ratio and "gti" for time binning according to the intervals in the user
specified GTI file. See the batbinevt help page for more detailed information.

Energy bin ranges are specified by the energybins parameter and can be expressed
as either a comma-separated list of floating point number ranges, a file name
containing energy bin ranges, or CALDB. A value of energybins = "-" indicates one all-
inclusive energy bin. At least one energy bin must be given to make a light curve, and
bins may not overlap. If a file name is given, it can either be an ASCII file containing
the same comma-separated energy bin list, or a FITS file with an EBOUNDS

20

extension (such as a response matrix), containing columns E_MIN and E_MAX (in
keV). If CALDB is specified, then the CALDB database is consulted for energy bins.

To eliminate the contribution of noisy pixels to the light curve, we can supply batbinevt
with a quality map that describes which detectors are enabled. In this example, we’ll
set detmask = event_rw/output/sw00100139000.mask.

As with spectra, the default procedure is to create light curves using mask weighting.
By using mask weighting, we are insuring that the light curve produced will only
represent photons coming from the specified source position. As we discussed when
using batbinevt to produce spectra, mask weighting is equivalent to background
subtraction.

To make a 1 second time bin light curve for the four energy bands 15-25 keV, 25-50,
keV, 50-100 keV, and 100-350 keV, from our example file
event_rw/sw00100139000bevshpsuf.evt we type:

my_computer>: batbinevt event_rw/sw00100139000bevshpsuf.evt
event_rw/output/sw00100139000_pre_slew_1s.lc LC 1.0 u 15-25,25-
50,50-100,100-350 detmask = event_rw/output/sw00100139000.mask
**
 batbinevt v1.5
--
 Input Events: event_rw/sw00100139000bevshpsuf.evt
 Output File: event_rw/output/sw00100139000_pre_slew_1s.lc (LC)
 Detector Mask: event_rw/output/sw00100139000.mask
 Time Range: 108578897.000000 to 108579231.691780 (requested)
 Time Range: 108578897.000000 to 108579231.691780 (actual)
 Apply Weighting?: YES Energy Column: ENERGY
 Energy Bins: 15-25,25-50,50-100,100-350
 Output Units: RATE
 Binning Method: UNIFORM
 Time Bin Size: 1.000000 (s)
--
 Light curve written to
event_rw/output/sw00100139000_pre_slew_1s.lc
 EBOUNDS written to event_rw/output/sw00100139000_pre_slew_1s.lc
 Number of Rows Processed: 281584
 Number Accepted/Rejected: 245047/36537
 Time Bins: 335 Energy Bins: 4
--

4. Produce a light curve from an event file. The default is to use the PI column in the
event file for energy and the MASK_WEIGHT column to produce a mask weighted light
curve. If the parameter ecol = PHA, then the PI column can be absent. Similarly if
weighted = no, then the MASK_WEIGHT column can be absent. There must be a GTI
extension.

21

batbinevt infile.evt outfile.lc outtype=LC timedel=1 timebinalg=u
energybins=25-50,50-100

This would produce an output light curve with one second, uniform time binning in two
energy channels. An EBOUNDS and a GTI extension are produced.

5. Produce a spectrum from an event file.

batbinevt infile.evt outfile.lc outtype=PHA timedel=0 timebinalg=u
energybins=ebounds.file

If the file ebounds.file contains an 80 row EBOUNDS HDU, then the output would be
an 80-channel PHA file with a single time bin. If timedel=1, then it would produce a
PHA-II file with one-second time binning.

6. Produce a DPH from an event file.

batbinevt infile.evt outfile.lc outtype=DPH timedel=0 timebinalg=u
energybins=ebounds.file

This would produce a 80 energy channel DPH from the full time range of the event
data.

7. Produce a DPI from a DPH.

batbinevt infile.dph outfile.dpi outtype=DPI timedel=0
timebinalg=u energybins=-

This would produce a DPI using all energy levels in the DPH.
Other options for timebinalg are described in the help file for batbinevt.

See the online help for batbinevt for many additional examples.

22

B. Batcelldetect

This tool is used to find sources in a BAT sky image (as produced by batfftimage). It
finds sources using a sliding “cell” method (hence the tool name) and when a source
is found above the user specified threshold, then it fits a two-dimensional Gaussian
function to derive a count value for the source.

This tool is appropriate for coded aperture imaging because: (1) it assumes
Gaussian fluctuations, not Poissonian; (2) it measures the local background; and (3)
it measures the local background standard deviation. A source is detected at a pixel if
that pixel's value exceeds the background by more than snrthresh times the
background standard deviation. Users can increase the significance of a detection
and reduce false detections by requiring more than one adjacent pixel exceed the
threshold, using the nadjpix parameter.

The background value is estimated by using a sliding window. The shape of
the window is either circular or square, and the radius (or half-width) is specified by
the bkgradius parameter. In determining the background, a circular region at the
center of the window is excluded, whose radius is the srcradius parameter. Thus,
the background does not include contamination from the source region.

In a single iteration, the sliding cell algorithm is less sensitive in a region
around bright sources, because the background standard deviation becomes
biased. To avoid this, the algorithm can be run in multiple iterations. After each
iteration, the detected pixels are removed, and thus the bias can be significantly
reduced.

A second stage fits a gaussian point spread function to regions of the image
where sources are detected. This aids in refining the centroid of the source position,
as well as in estimating uncertainties.

The default output is a catalog list of detected sources, plus various statistics
about them. The tool can optionally output the background map, the background
fluctuation map, and a significance map.

The user can also supply an input catalog. Sources in the input catalog,
which are within the field of view of the image, are assumed to be fixed at their known
positions, and fitted for intensity only during the PSF-fitting stage .

This routine uses a relatively straightforward brute-force convolution by FFT to
compute the sliding-cell averages. Users should have a about a factor of eight more
memory than the size of the image.

The simplest invocation is simply

batcelldetect infile.img outfile.cat snrthresh=6.0

The output is a file which lists, for each source found above a signal to noise ratio of
6.0, information including source location, counts, significance, background, and
diagnostics about the search. The source location is reported in a number of formats

23

and coordinate systems including celestial (RA and declination), BAT image
coordinates (tan_x and tan_y) and pixel coordinates.

It is also possible to input a source catalog. In this case the tool derives a count value
for each source in the catalog in addition to those found using the search algorithm.

Input Files (batcelldetect):

Hidden parameters are listed in parentheses. If these are required, then the code will
use default values.

Required:
infile: Input file name containing a sky map.

Optional:
(incatalog): Name of input catalog of known sources. This catalog must have
at least the columns RA and DEC, in degrees (J2000). Additional columns are
also copied to outfile. Sources from this catalog which are in the field of view
are held at a fixed position in order to determine the flux. A value of "NONE"
indicates that no a priori catalog should be used. Specifying this keyword does
not prevent the cell-detection based source detection algorithm from being
applied.

(pcodefile): Name of optional partial coding map file. This may be any image
with exactly the same dimensions and coordinate system as infile. Any
region where the partial coding map exceeds pcodethresh is searched for
sources; any region where it is below pcodethresh is ignored. The map need
not be an actual partial coding map; any quantity that can be thresholded (even
a map of 0s and 1s) can be used. If pcodefile is "NONE", then the entire image
is searched.

Output Files (batcelldetect):

Required:
outfile: Output source list.

Optional:
(regionfile): Optional name of source detection region file. Upon output,
sources listed in the outfile catalog are also written to a standard "region" file,
which can then be read into image display programs such as fv/POW or SAO
ds9. Output units are degrees. The radius of the circle is twice the PSF
gaussian sigma radius.

(signifmap): Optional output file name for the significance map.

24

(bkgmap): Optional output file name for the mean background map.

(bkgvarmap): Optional output file name for the background fluctuation map.

Parameters (batcelldetect):

Hidden parameters are in parentheses and need not be supplied on the command
line. There are three additional parameters common to all FTOOLs which are
described at the beginning of this section. The brief descriptions of the parameters
given here are for reference only, for a full discussion of what the parameters do and
what values they can take refer to the online help (fhelp) for this tool.

The table is found on the next page.

25

Optional output file name for the background
fluctuation map.

 (bkvarmap) = NONE [string]

Minimum number of pixels in the background
window to enable source detection.

 (npixthresh) =20 [integer]

Optional output file name for the mean background
map.

 (bkgmap) =NONE [string]

Optional output file name for the significance map. (signifmap) =NONE [string]

Start index number to be used to label new
sources.

 (newsrcind) =1 [integer]

Name to be used for newly detected sources. (newsrcname) ="UNKNOWN"

Specifies whether batcelldetect fits the position of
already known sources.

 (posfit) =NO [boolean]

 Whether to fit newly detected and previously
cataloged sources (if any)

 (srcfit) =YES [boolean]

 Whether to attempt to detect new sources. (srcdetect) =YES [boolean]

Optional name of source detection region file. (regionfile) =NONE [string]

Source radius in pixels. (srcradius) =6 [integer]

Background window radius in pixels. (bkgradius) =30 [integer]

Background window type, one of "circle" or "square". (bkgwindowtype) ="circle"

Minimum number of adjacent pixels required
for source detection.

 (nadjpix) =4 [integer]

Number of iterations of source detection to perform. (niter) =2 [integer]

Constrain newly detected peaks to be positive. (pospeaks) =YES [boolean]

Threshold to apply to the map in specified in
pcodefile.

 (pcodethresh) =0.01 [real]

Name of optional partial coding map file. (pcodefile) =NONE [string]

Name of input catalog of known sources. This
catalog must have at least the cols RA and DEC, in
degrees. Additional columns are also copied to
outfile.

 (incatalog) =NONE [string]

Signal to noise threshold for detection of sources.
A value of 6.0 indicates that an excess must be 6
sigma above the background level to be a
detection.

 snrthresh [real]

Output source list. outfile [filename]

Input file name containing a sky map. infile [filename]

Description of batcelldetect parametersParameter / Default / Data Type

26

Examples (batcelldetect):

1. Refine the BAT GRB position

To use batcelldetect to refine a gamma ray burst position, we start by just having it
find all the sources in the sky image. The basic form for using the batcelldetect tool
is:

batcelldetect infile.img outfile.src snrthresh incatalog=NONE
pcodefile

where infile.img contains a sky image. Here we’ll use the FITS sky image (pre-slew
total band) made in the batfftimage recipe: event_rw/output/sw00100139000_1.dpi.
The outfile.src file is an ASCII source list that batcelldetect produces. We’ll use
event_rw/output/source_list_1.txt. The parameter snrthresh is a real number
representing the minimum signal to noise threshold for the detection of sources. For
example, a value of 6.0 indicates that the excess must be 6 sigma above the
background level to be considered a detection. For performance reasons, users
should choose snrthresh > 3.5. Here, let’s set snrthresh = 8. The incatalog parameter
should be set to “NONE” (default). A value of "NONE" indicates that no a priori catalog
should be used. Specifying this keyword does not prevent the cell-detection based
source detection algorithm from being applied. Finally, the pcodefile parameter is the
name of the appropriate partial coding map for this observation. Here we will use the
map we made in the batfftimage recipe: pcodefile = event_rw/output/pcodemap.img.

To run batcelldetect this first time, we type:

my_computer>: batcelldetect event_rw/output/sw00100139000_1.dpi
event_rw/output/source_list_1.txt 8.0 incatalog=NONE pcodefile=
event_rw/output/pcodemap.img
**
batcelldetect v1.6

--
Input Image: event_rw/output/sw00100139000_1.dpi
Output Catalog: event_rw/output/source_list_1.txt
Input Catalog: NONE
Part. Coding Map: event_rw/output/pcodemap.img
(threshold=0.010000)
Back. Window: CIRCLE Radius: 30
Source Window: CIRCLE Radius: 6
SNR Threshold: 8.000000
Number of Iter.: 2
Min. Num. Pixels: 20
--
Found 1 Images
Analyzing Image: 1
...read tanxy WCS keywords from image (suffix "T")...

27

IMX -- CRPIX=0.000000 CDELT=19.199402 CRVAL=0.000000
IMY -- CRPIX=7.474824 CDELT=19.051758 CRVAL=0.000000
...read def WCS keywords from image (suffix "")...
(X -- CRPIX=0.000000 CDELT=19.199402 CRVAL=0.000000)
(Y -- CRPIX=7.474824 CDELT=19.051758 CRVAL=0.000000)
ERROR: could not read image keywords
CFITSIO ERROR KEY_NO_EXIST: keyword not found in header
Task batcelldetect 1.6 terminating with status 202

Note to user: this obviously didn’t run correctly. There was no time for further
corrections before this draft was produced. Consult BAT Burst Advocate trainers for
more up-to-date information.

28

C. Batclean

This tool is used to clean out a background model and bright sources (from a catalog
file) from a DPI. Currently the code operates only on a single DPI (not a DPH).

The tool currently incorporates a simple time-independent background model,
which treats detectors on the edges of DMs differently from detectors in the center
(due to their having greater projected surface area). The fitting method is a simple
singular value decomposition. The fit to the background is subtracted from the
detector plane.

To clean sources the tool uses the same forward projection method used in
batmaskwtimg to produce a model of the source flux on the detector plane. This
model is fit to the detector plane and subtracted. It is possible to clean the
background only, by setting incatalog=NONE.

 Source Cleaning:

If one or more sources are to be cleaned from the DPI (default), then the tool reads
the source locations from the incatalog file and then calls the routine maskwtimg
which uses a forward projection to create a model of the source exposure through the
aperture onto the detector plane.

Background Cleaning:

The tool creates a simple eighteen parameter background model, which is
described as follows:

 1 = constant, 2 = proportional to X, 3 = proportional to Y
 4 = proportional to X^2, 5 = proportional to Y^2
 6 = proportional to X^Y,
 7 = Detector on left (-X) side of sandwiches: constant,
 8 = Left side detectors: proportional to X,
 9 = Detector on right (+X) side of sandwiches (sws): constant,
 10 = Right side detectors: proportional to X,
 11 = Dets on front (-Y) side of sws (front half of array): const,
 12 = Front side detectors (front half): proportional to Y,
 13 = Dets on front (-Y) side of sws (back half of array): const,
 14 = Front side detectors (back half): proportional to Y,
 15 = Dets on back (+Y) side of sws (front half of array): const,
 16 = Back side detectors (front half): proportional to Y,
 17 = Dets on back (+Y) side of sws (back half of array): const,
 18 = Back side detectors (back half): proportional to Y,

 The code creates a background exposure map based on the model above (which
can be optionally output using the backexp parameter).

29

The tool then uses a singular value decomposition method to fit the source exposure
and background exposure maps to the data from the DPI. The coefficients from the fit
are written to the output file as keywords.

The fit coefficients are then used to create a model background DPI. This is then
subtracted from the original input DPI to produce a cleaned DPI.

Input Files (batclean):

This code reads in a Detector Plane Image (DPI) file as well as an optional
detector mask file. If no detector mask file is provided, then all detectors with non-
zero data are included in the fit. The tool works on either flight or simulated flight
data (sources at infinity) or ground calibration data (sources at a finite distance). See
the description of the bat_z parameter for more about cleaning of sources at a finite
distance.

Hidden parameters are listed in parentheses. If these are required, then the code will
use default values.

Required:
infile: Input file name. The name of the input DPI file. This is expected to
be an image array with dimensions equal to the number of detector columns by
the number of detector rows (set to 286 X 173)

 incatalog: (optional if srcclean = “NO”) Input source catalog. The format of the
catalog file is that output by the BAT tool batcelldetect. In particular the catalog
must contain columns "IMX," "IMY," "SOURCE_ID," "NAME," and "SNR." The
tool reads the source position in BAT image coordinates from this file
and uses the source position to forward project a model of the source flux
onto the focal plane. This parameter may be omitted or set to "NONE" if only
background cleaning is required (i.e., the srcclean parameter set to "NO").

 (aperture): (optional if srcclean = “NO”) Aperture file. The default is the
aperture file in the HEADAS/refdata area. This parameter may be omitted or
set to "NONE" if only background cleaning is required (i.e., the srcclean
parameter set to "NO").

Optional:
 (detmask): Name of a detector mask file. This should be an image file with the

same dimensions as the focal plane map. A pixel value of 0 indicates the
detector is enabled for imaging, and a value of 1 indicates disabled, noisy,
or otherwise selected for elimination from fits. A default value of NONE
implies all detectors are on, except for the BAT detector gap regions. It is

30

strongly recommended to use a detector mask file if one is available. The
quality of the fit, especially to calibration data is greatly improved if only working
detectors are included in the fits.

 (wtmapin): Name of an input error map. This is used to provide weights for the
fitting in case one is cleaning a DPI which does not have Poisson statistics
(such as an already cleaned DPI). The typical sequence would be to
create an error map using the wtmapout parameter on the first cleaning and
then read this error map in on the second cleaning. If an already cleaned
image is cleaned without an input error map than uniform weighting is
used.

Output Files (batclean):

Required:
outfile: Output file name. This will be written in the DPI format. The default is
to write out the cleaned image, but other outputs can be selected using the
outversion parameter. Precede the output file name with an exclamation
point, !, (or \!on the Unix command line), to overwrite a preexisting file with the
same name (or set the clobber parameter to YES).

Optional:
 (wtmapout): Name of an output error map. If a filename is specified then the

tool writes out a DPI containing the calculated weights for each detector. This
can be used on subsequent cleanings as the input wtmapin error map.

(backexp): If the name of a file is given here, then the background model will
be output to this file. The format is a binary table with one column for each
model parameter. The data is written in DPH format, or as a 286 X 173
element array, one number per detector. This table gives the model which was
fit to the data, not the actual fit to the data. The final column in the table is the
covariance matrix from the fit.

Parameters (batclean):

Hidden parameters are in parentheses and need not be supplied on the command
line. There are three additional parameters common to all FTOOLs which are
described at the beginning of this section. The brief descriptions of the parameters
given here are for reference only, for a full discussion of what the parameters do and
what values they can take refer to the online help (fhelp) for this tool.

The table is found on the next page.

31

what detector plane image is written to the outfile:
“cleaned”: cleaned DPI (input minus fit).
“original”: Write the input DPI filtered by det mask.
“fit”: Write the fit DPI.
“bkgcleaned”: Write the background cleaned DPI.
“bkgfit”: Write the fit to the background only.

The depth of edge (cm) to consider effective.

Leading edge detectors are fit separately from the
rest of the detectors.

 (leadedge) = "NO" [string]

 (eff_edge) = 0.2 [float]

Comma-separated list of corrections to apply
to the mask weighting:
"flatfield" (basic flat fielding correction)
"cosine" (cosine effects of off-axis illumination)
"rsquare" (r-squared effects only)
 "opaque" (activates a new algorithm for
calculating the mask transmission function);
"sides" (effects of sides of dets not implemented).

Only sources with a signal-to-noise ratio as
read from the incatalog higher than this value are
cleaned from the DPI.

Determines if sources are cleaned from the input
DPI or only background.

This optional parameter indicates the
background model to be fit. The only model
currently supported is “simple.”

The z-component of the distance to the source in
BAT_Z coords (the vertical distance of the source
from the origin of the BAT coordinate system).

The background model will be output to this file.

Name of an output error map.

Name of an input error map.

Name of a detector mask file.

Aperture file.

Input source catalog.

Output file name.

Input file name.

 (outversion) = "cleaned" [string]

 (corrections) = "none" [string]

 (cleansnr) = 6.0 [real]

 (srcclean) = "YES" [string]

 (bkgmode) = "simple" [string]

 (bat_z) = 0 [real]

 (backexp) = "NONE" [filename]

 (wtmapout) = "NONE" [filename]

 (wtmapin) = "NONE" [filename]

 (detmask) = "NONE" [filename]

 (aperture) [filename]

 incatalog [filename]

 outfile [filename]

 infile [filename]

Description of batclean parameterParameter / Default / Data Type

32

Examples (batclean):

1. Fit the simple background model to a DPI with a detector mask file.
 Output the cleaned DPI and a background exposure map.

batclean input.dpi cleaned.dpi detmask=bat.mask
backexp=backexp2.dph srcclean=NO

2. Fit a set of source models along with a simple background model to
 a DPI, using the default aperture file. Output the fit to the focal
 plane instead of the cleaned focal plane. A flat-fielding correction
 is applied in the forward projection.

batclean input.dpi fit.dpi catalog.tbl detmask=bat.mask
outversion="fit"corrections="flatfield"

33

D. Batdph2dpi

This is a simple tool which collapses the energy dimension of a DPH to produce a
DPI. This functionality is also present in batbinevt, but this tool remains as a simpler
way to accomplish this. The only options to the tool are the row number in the DPH
file and the energy ranges in the DPH to be collapsed. Only one row in a DPH can be
selected at a time.

Input Files

Required:
infile: Input file name.

Output Files

Required:
outfile: Output file name.

Parameters

Hidden parameters are in parentheses and need not be supplied on the command
line. There are three additional parameters common to all FTOOLs which are
described at the beginning of this section. The brief descriptions of the parameters
given here are for reference only, for a full discussion of what the parameters do and
what values they can take refer to the online help (fhelp) for this tool.

Ranges of energy levels that are used in flattening.

Number of the row from which the data are taken
for flattening the image.

 Output file name.

 Input file name.

 levels

 rows

 outfile [filename]

 infile [filename]

DescriptionParameter / Default / Data Type

Example:

batdph2dpi infile.dph outfile.dpi 1 -

This would collapse all energy levels of the first row of the input file into a DPI.

34

E. Batdph2pha

This tool extracts from a DPH one histogram for each detector in the array. The output
is a table with 32768 rows, each containing a histogram with the binning from the
original DPH. The EBOUNDS extension is copied to the output file.

This tool is necessary because there is no way to easily visualize the individual
spectra using only standard FITS tools.

Input Files

Required:
infile: Input file name. There is no need to include the extension name of the
HDU since batdph2pha only operates on an HDU with name "BAT_DPH." The
tool assumes that there is also and "EBOUNDS" extension in the input file.

Output Files

Required:
outfile: Name of the output file. The output file is similar in form to a spectral
file, but each row contains a spectrum for an individual detector, not for a
particular interval of time. The spectra are contained in the "COUNT" column
as vectors with as many elements as there are energy bins in the input DPH.
The "EBOUNDS" from the input file is copied to the output file.

Parameters

There are three additional parameters common to all FTOOLs which are described at
the beginning of this section. The brief descriptions of the parameters given here are
for reference only, for a full discussion of what the parameters do and what values
they can take refer to the online help (fhelp) for this tool.

The row number in the input DPH which is used to
produce the output spectra.

 Name of the output file.

 Input file name.

 row [integer]

 outfile [filename]

 infile [filename]

DescriptionParameter / Default / Data Type

Example:

batdph2pha infile='input.dph' outfile='output.spectrum' row=3

This produces a set of 32768 spectra from row 3 in the DPH.

35

F. Batdrmgen

Batdrmgen is the BAT Detector Response Matrix (DRM) generator tool that
computes the full BAT instrument response to incident photons, given the source
position information read from an input PHA spectral file. The output FITS file
contains a matrix that represents the mask-weighted summed response of all the
active pixels in the entire BAT array. Since BAT is a coded-aperture hard x-ray
imager, it is difficult to separate its response into the ARF and RMF files that are
familiar to many FTOOLS users. Since the mask-weighted sum of the spectra from
all of the active pixels is equal to the total background-subtracted source count
rate measured by the BAT, this output DRM is the only file needed by XSPEC to
perform spectral analysis of the BAT PHA data files.

The batdrmgen tool follows batbinevt in the burst spectroscopy analysis
pipeline. The batbinevt output for a particular gamma-ray burst or other source is a
FITS PHA spectrum file that becomes the input to batdrmgen. This input PHA file
contains a full-array counts spectrum, the energy bin edges, and source position
information. The batdrmgen tool will produce a DRM for only one source position
(PHA file) at a time.

For each incident photon energy bin, batdrmgen computes the BAT counts
spectrum that would be measured if a mono-energetic stream of photons of unit
photon flux with an energy at the bin midpoint were incident on the array. Repeating
this calculation for each incident energy bin produces an N x M matrix, where N is
the number of incident photon bins and M is the number of PHA counts bins. While
the incident photon energy bin edges can be defined by the user, the output PHA
counts spectrum bin edges are read from the EBOUNDS extension in the input PHA
file.

The BAT DRM is calculated using the set of quasi-physical calibration
parameters that are appropriate for the particular position of the photon source.
These parameters were determined from least squares fits of the spectral model to
actual ground calibration data measured using radioactive gamma-ray sources that
were mounted in a variety of positions within the BAT field of view (FOV). The
calculation also makes use of the detector charge trapping parameters measured
during ground calibration tests. The angle dependent calibration parameters and
the detector charge trapping parameters are stored in a calibration file managed
by the CALDB utility.

Since batdrmgen models the signal loss due to charge trapping at different
absorption depths within the CZT detectors, it requires a knowledge of the
interaction depth probability distributions for 10-500 keV photons coming from
anywhere within the BAT FOV. Simple Monte Carlo simulations of the absorption of
10-500 keV photons in a 2 mm thick CZT detector were used to create 1000-element
tables of the probabilities of a photon interacting in each of the 2 mm/1000 = 2
micron thick CZT detector "slices." These 1000-element depth distribution
vectors were determined over a moderately dense grid of energies and incident
angles within the BAT FOV. The depth distribution used for a particular source

36

position and energy is determined by interpolating within this table. This depth
distribution information is highly compressed and stored in a second calibration file
also managed using CALDB.

Users have the choice of 2 methods for DRM generation: The default
method, "TABLE," accesses the table of calibration parameters for different source
positions and sorts the table with respect to the angular separation between the
source direction vector and the position vector for each ground calibration
measurement. Batdrmgen then calculates the weighted average of the parameter
values from the three closest calibration measurements. Thus, the ground
calibration parameters from measurements closer to the source position will be
weighted more heavily. The alternative method is "MEAN," where the spectral
response is calculated using the average parameter values over the entire BAT FOV.

Input Files (batdrmgen):

Hidden parameters are listed in parentheses. If these are required, then the code will
use default values.

Required:
infile: Name of the PHA FITS input file containing the binned and mask-
weighted BAT data as well as header keywords containing the source
position and other information relevant to the response calculation.

(calfile): Name of the FITS file that contains the spectral parameters for the
response function. The default value is "CALDB" thus allowing the file to be
managed by the CALDB utility.

(depthfile): Name of the FITS file that contains the compressed photon
interaction depth distribution generated by Monte Carlo simulations. The
default value is "CALDB" thus allowing the file to be managed by the CALDB
utility.

 (efile): File name for the user-specified FITS file containing the user's
custom incident energy bin edges (used for escale = FILE as discussed
above). The default value, "CALDB" indicates that the default incident
spectrum will be used. This default spectrum has the energy range of 10 keV
to 500 keV divided into 200 logarithmically-spaced bins with bin edge
adjustment made for the absorption edges of CdZnTe (26.711 keV for the Cd
K edge and 31.814 for the Te K edge). As indicated, the file containing the
default input bin edges is managed by the CALDB utility.

Optional:
(detmask:) File name for the detector quality mask (with dimensions of
286x173) which indicates which detectors were used to accumulate the
spectrum. (Not yet implemented)

37

Output Files (batdrmgen):

Required:
outfile: Name of the output FITS response file (*.rsp) that will contain the N x M
DRM in a format appropriate for use with XSPEC.

Parameters (batdrmgen):

Hidden parameters are in parentheses and need not be supplied on the command
line. There are three additional parameters common to all FTOOLs which are
described at the beginning of this section. The brief descriptions of the parameters
given here are for reference only, for a full discussion of what the parameters do and
what values they can take refer to the online help (fhelp) for this tool.

The table is found on the next page.

38

Batdrmgen Parameters

A string specifying which corrections should be
applied to the response matrix calculation.

File name for the user-specified FITS file
containing the user's custom incident energy bin
edges

The desired upper energy limit for the incident
photon energy scale

The desired lower energy limit for the incident
photon energy scale

The number of bins desired in the incident photon
energy scale

Flag indicating whether the PHA file contains
flight data as opposed to ground calibration data.

Computation method for DRM.
Default method ("TABLE") accesses the table of
calibration parameters for different source
positions.
Alternative method ("MEAN") the spectral
response is calculated using the average
parameter values over the entire BAT FOV.

File name for the detector quality mask.

Desired form of the incident photon energy
spectrum binning.
"FILE:" program reads a file containing the bin
edges
"LIN" for linear binning
"LOG" for logarithmic binning.

File that contains the compressed photon
interaction depth distribution

 File that contains the spectral parameters for the
response function.

 Output file name.

 Input file name.

 (fudge) = INDEF [string]

 (efile) = CALDB [string]

 (elimit_hi) = 200.0 [real]

 (elimit_lo) = 15.0 [real]

 (nphoton_bins) = 160 [integer]

 (flight_data) = YES [boolean]

 (method) = TABLE [string]

 (detmask) = NONE [filename]

 (escale) = FILE [string]

 (depthfile) = CALDB [filename]

 (calfile) = CALDB [filename]

 outfile [filename]

 infile [filename]

DescriptionParameter / Default / Data Type

39

Examples (batdrmgen):

1. Generate a BAT response matrix
If you wish to do spectral analysis with
event_rw/output/sw00100139000_preslew.pha using XSPEC, you will need to
generate a BAT response matrix matching the source position and counts spectrum
energy bin edges from event_rw/output /sw00100139000_preslew.pha . The
tool batdrmgen computes the BAT detector response (RSP) for a mask weighted PHA
spectrum, such as the PHA output of the batbinevt tool. The standard form of the use
of batdrmgen is given below:

batdrmgen infile.pha outfile.rsp calfile depthfile

batdrmgen obtains the burst position information and the energy bin edge values
from the input PHA FITS file infile.pha. For this example, let infile.pha =
event_rw/output/sw00100139000_preslew.pha and outfile.rsp =
event_rw/output/sw00100139000_preslew.rsp. The last two entries, calfile and
depthfile refer to BAT calibration parameter tables that are usually managed by
CALDB, so let’s assume that the calfile and depthfile parameters are both “CALDB.”

my_computer>: batdrmgen event_rw/output/sw00100139000bevshpsuf.pha
event_rw/output/sw00100139000bevshpsuf.rsp (chatter=2)
----------Begin task batdrmgen --------------
**
 batdrmgen v2.1
--
 PHA File: event_rw/output/sw00100139000bevshpsuf.pha
 Output File: event_rw/output/sw00100139000bevshpsuf.rsp
 Calibration File: CALDB
Depth Distribution File: CALDB
 Detector Mask: NONE
 Method is: TABLE
 Escale is: FILE
--
SPECRESP MATRIX written to
event_rw/output/sw00100139000bevshpsuf.rsp
EBOUNDS written to event_rw/output/sw00100139000bevshpsuf.rsp
----------batdrmgen task complete------------

2. Additional Example:

batdrmgen test.pha response.rsp bat_parms-2003-08-19.fits
bat_depth_dist_030526.fits.gz

The output is an RMF file suitable for use in XSPEC to derive a photon spectrum from
the counts spectrum in the input file. The number of output photon bins can be set by

the user.

40

G. Bateconvert

This tool reads in an event file and one to three calibration files containing gains
and offsets in a BAT Detector Plane array. For each event it calculates the energy in
keV from the ADU value (PHA), gain and offset. The tool fills the PI and ENERGY
columns in the event FITS file. PI is the same as energy, but expressed in units of 0.1
keV. If the event file does not have a PI column, then such a column is added to the
file.

The default is to fill in or create the PI column in the input file, but if the
optional "outfile" argument is given, a new file with the PI column filled is created.

Input Files

Required:
infile: Input file name. There is no need to include the extension name of the
HDU since bateconvert only operates on an HDU with name "EVENTS."
Unless an outfile name is specified, bateconvert will automatically fill in the PI
column in the infile and/or create a PI column if none exists.

 calfile: (optional if zeroit = ”YES”) Name of the calibration file.This file is
expected to contain the gain and offset derived in flight. This file is used for
both LINEAR and QUADRATIC energy conversion. The file must exist and
must include a "BAT_MAP" extension with "GAIN" and "OFFSET," columns
containing calibration parameters in the proper format.

 residfile: (optional if calmode = “LINEAR” or zeroit = ”YES”) Name of the file
containing the residuals between a quadratic pulser gain fitting and a linear
fitting. This file is typically derived from ground processing. This file is
used for the QUADRATIC energy conversion. The file must exist and must
include a "BAT_MAP" extension with "GAIN2", "GAIN," "OFFSET" columns
containing calibration parameters in the proper format.

Output Files

Required:
None.

Optional:
 (outfile): Output file name. If an output file name is given, bateconvert will

create a new file which is a copy of the input file with the PI and ENERGY
columns filled in. The input file will remain unchanged. Precede the output
file name with an exclamation point, !, (or \!on the Unix command line), to
overwrite a preexisting file with the same name (or set the clobber
parameter to YES).

41

Parameters

Hidden parameters are in parentheses and need not be supplied on the command
line. There are three additional parameters common to all FTOOLs which are
described at the beginning of this section. The brief descriptions of the parameters
given here are for reference only, for a full discussion of what the parameters do and
what values they can take refer to the online help (fhelp) for this tool.

Bateconvert Parameters

If YES (default), then the ENERGY column is
written as 16-bit integers with a TSCAL scale
factor which converts to keV.
If NO, 32-bit floating point values are written
directly.

Set all values in the PI and ENERGY columns to
zero

The calibration mode.
LINEAR fit applies two parameters, gain and
offset using the formula:
ENERGY=GAIN*(OFFSET-PHA).
QUADRATIC fit performs the linear fit and then
adds in a residual to correct for the deviation of
the true fit from linearity.

 Output file name.

 Name of the pulser calibration file.

 Name of the file containing the residuals
between a quadratic pulser gain fitting and a
linear fitting.

 Name of the calibration file.

 Input file name.

 (scaled_energy) =YES [boolean]

 (zeroit) =NO [boolean]

 (calmode) =QUADRATIC [string]

 (outfile) [filename]

 pulserfile [filename]

 residfile [filename]

 calfile [filename]

 infile [filename]

DescriptionParameter / Default / Data Type

Examples (bateconvert):

1. Linear energy conversion

bateconvert infile='infile.evt' calfile='calfile.cal'
residfile=NONE pulserfile=NONE calmode=LINEAR

42

This would create a PI column in the infile if none already exists and apply a linear
calibration. If the optional outfile parameter is specified, then the infile is unchanged
and copied to the outfile, to which a PI column is added.

2. Quadratic energy conversion

bateconvert events.fits cal.fits resid.fits pulser.fits

Since the default calmode is quadratic, this example would use the calibration files
resid.fits and pulser.fits along with the gain/offset map cal.fits to apply a quadratic
correction. The calibration files would typically be found in the calibration database,
so “caldb” is an appropriate value for these parameters. There are two calibration
files because they are derived from different calibrations and because they can
change independently.

This tool is used in the SDC pipeline to process the event files.

43

H. Baterebin

This tool uses similar algorithms to bateconvert and takes similar input files. Since
the onboard energy calibration is linear, this tool is used to rebin the DPHs to correct
for the difference between a linear calibration and a quadratic calibration.

Input Files

Required:
infile: Input file name.

calfile: Name of the file that contains the linear calibration constants

 residfile: Name of the file that contains the quadratic residuals to the energy
correction

 pulserfile: Name of the file that contains the pulser calibration constants.

Output Files

Required:
outfile: Name of the output file.

Parameters

Hidden parameters are in parentheses and need not be supplied on the command
line. There are three additional parameters common to all FTOOLs which are
described at the beginning of this section. The brief descriptions of the parameters
given here are for reference only, for a full discussion of what the parameters do and
what values they can take refer to the online help (fhelp) for this tool.

The table is found on the next page.

44

Baterebin Parameters

 The row number in the input DPH which is to
be rebinned in energy.

 Selects whether the user wants whole {w} or
fractional {f} binning.

 For baterebin, calmode should always be set to 1

 Name of the file that contains the pulser
calibration constants.

 Name of the file that contains the quadratic
residuals to the energy correction.

 Name of the file that contains the linear calibration
constants.

 Name of the output file.

 Input file name.

 row [integer]

 wf [string]

 calmode [string]

 pulserfile [filename]

 residfile [filename]

 calfile [filename]

 outfile [filename]

 infile [filename]

DescriptionParameter / Default / Data Type

Example (baterebin):

baterebin infile.dph outfile.dph calfile.fits caldb caldb row=1
wf=w

This would use the calibration database residuals and pulser calibration files to rebin
the DPH, moving only whole counts from one bin to another.

45

I. Batfftimage

Batfftimage constructs a sky image by deconvolving the observed detector plane
image with the BAT mask aperture map. This tool is used to estimate the positions
and intensities of previously unknown sources on the sky. Typically this tool may be
run on a detector image after background cleaning with batclean, but this step is
not required.

Batfftimage also has a secondary usage, which is to compute the partial
coding map of the sky. This map represents the fractional exposure of the sky for a
given detector/aperture configuration, and is similar to the vignetting profile for
imaging telescopes. To compute the partial coding map, users should specify
infile="NONE" and pcodemap="YES". A partial coding threshold can also be specified
using pcodethresh, which is a fraction between 0.0 and 1.0. Partial coding values
below pcodethresh are set to zero.

If an attitude file is specified, then a celestial coordinate system will be
attached to the primary World Coordinate System (WCS) descriptors of the image. If
no attitude file is specified, then the BAT instrument tangent plane coordinates are
assigned instead.

Batfftimage will operate on single or multiple images. Multiple input images
may be stored as multiple extensions in a single file, or as a FITS table containing
one image per row. Individual images may be selected by using the 'rows'
parameter. If a table of input images is supplied, then the column specified by
'countscol' is selected. If a column is not specified, then the first 2D column is
selected. Output images are always stored as FITS image extensions.

If a background detector map is available, batfftimage can automatically
subtract it. It automatically recognizes rate vs. count images, and applies an
exposure correction to the background if necessary. If multiple images are
operated on, then the background file must either have a single image (which is
applied to all inputs); or the same number of images as the input file.

Input Files (batfftimage):

Hidden parameters are listed in parentheses. If these are required, then the code will
use default values.

Required:
infile: (Optional if pcodemap=YES) Input file name containing BAT detector
plane image.

 (aperture): BAT aperture map file name, which contains the coded mask
pattern and alignment parameters. If the CALDB database is set up, then
CALDB can also be specified.

46

Optional:
attitude: Swift attitude file name. If NONE is given, then a celestial coordinate
system cannot be assigned to the image.

 (detmask): Name of a detector quality map file. This should be an image file
with the same dimensions as the focal plane map. A pixel value of 0 indicates
the detector is enabled for imaging, and a non-zero value indicates disabled.
A default value of NONE implies all detectors are on, except for the BAT
detector gap regions.

 (bkgfile): Name of a file containing background image data to be
subtracted from the input. A value of NONE indicates no subtraction should
be performed.

 (teldef): BAT instrument telescope description file, which defines
instrument-to-spacecraft alignments. Must be specified in order to assign
celestial coordinates to the output image. A value of "NONE" disables
celestial coordinates. By default the teldef file located in the HEADAS
reference data area is used. If the CALDB database is set up, then CALDB can
also be specified.

Output Files (batfftimage):

Required:
outfile: Output sky image or partial coding map file name.

Parameters (batfftimage):

Hidden parameters are in parentheses and need not be supplied on the command
line. There are three additional parameters common to all FTOOLs which are
described at the beginning of this section. The brief descriptions of the parameters
given here are for reference only, for a full discussion of what the parameters do and
what values they can take refer to the online help (fhelp) for this tool.

The table is found on the next page.

47

 Append to existing output file?

 Mask weight technique software gain correction
factor.

 BAT instrument telescope description file.

 If the input image is a FITS table, the column to
analyze.

 An index list of images to operate on.

 The handedness of the image.

Comma-separated list of corrections to apply to
the image. See below for descriptions.

 For ground testing with a near-field source.

 For testing with a near-field source.

 Minimum allowable partial coding value in the
partial coding map.

 If YES, then output will be a partial coding map.

 If YES, then the detector and aperture maps will
be adjusted so that their additive means are zero.

 Translational offset to apply to the mask along
the BAT_Z coord from its nominal design position.

 Translational offset to apply to the mask along
the BAT_Y coord from its nominal design position.

 Translational offset to apply to the mask along
the BAT_X coord from its nominal design position.

 Oversampling factor of image in Y direction.

 Oversampling factor of image in X direction.

 Name of a file with background image data.

 Name of a detector quality map file.

 BAT aperture map file name.

 Swift attitude file name.

 Output sky image or partial coding map file name.

 Input file containing BAT detector plane image.

 (append) = NO [boolean]

 (maskwtswgain) = 0.03 [real]

 (teldef) = "CALDB" [string]

 (countscol) = "INDEF" [string]

 (rows) = "-" [string]

 (handedness) = "left" [string]

 (corrections) = "default" [string]

 (origin_z) = 0 [real]

 (bat_z) = 0 [real]

 (pcodethresh) = 0.01 [real]

 (pcodemap) = NO [boolean]

 (rebalance) = YES [boolean]

 (maskoffz) = 0.0 [real]

 (maskoffy) = 0.0 [real]

 (maskoffx) = 0.0 [real]

 (oversampy) = 2 [integer]

 (oversampx) = 2 [integer]

 (bkgfile) = "NONE" [string]

 (detmask) = "NONE" [string]

 (aperture) = "CALDB" [filename]

 attitude = "NONE" [string]

 outfile [filename]

 infile [filename]

Description of batfftimage parameterParameter / Default / Data Type

48

Further description of the corrections parameter:

Comma-separated list of corrections to apply to the image, or "none" if no
corrections are to be applied. The possible corrections are:

default: Default corrections, which is shorthand for:
"autocollim,flatfield,maskwt,ndets,pcode"

 autocollim: Correct plate scale for autocollimation effect

 flatfield: Apply corrections for projection effects

 maskwt: Apply corrections for FFT technique

 ndets: Normalize by number of exposed detectors

 pcode: Apply partial coding corrections

Examples (batfftimage):

1. Compute sky images

The BAT analysis tool batfftimage constructs a sky image from a detector plane
images (DPI) using a Fast Fourier Transform to deconvolve the detector plane data
from the coded mask pattern. batfftimage is the primary BAT imaging tool and can
also produce a map of the coding fraction for each sky pixel. The coding fraction is
defined as the fraction of the array which is exposed to the sky pixel through the coded
mask. If an attitude file is specified, then a celestial coordinate system will be
attached to the primary WCS descriptors of the image. If no attitude file is specified,
then the BAT instrument tangent plane coordinates are assigned instead. The default
for imaging is for the tangent plane to be at infinity. However, the tool can also be used
for imaging at a finite distance from the detector plane, such as during ground
calibration tests with radioactive sources, by setting the parameter bat_z to a value
other than zero (zero signifies infinity in this context). The default aperture is the one in
the refdata area of the BAT tools release. This version is always kept up to date and
includes small deviations between the designed and as-built apertures.

The input to this tool is a detector plane image or *.dpi file. The basic form of the
command-line use of batfftimage is:

batfftimage infile.dpi outfile.img attitude.fits

Where infile.dpi is the input *dpi file.

49

The next filename on the list is outfile.img which is the name of the sky image file
we want to create and attitude.fits is the spacecraft attitude file. Additional
parameters need to be used since we want the analysis to use a quality map (use
detmask = event_rw/output /sw00100139000.mask) and we need to tell the
computer where the teldef file is that contains the instrument alignment inforrmation.
Also, remember that our example data was taken on the ground with a shuttered
radioactive source. We must therefore specify the z position of the source as well as
the offset of the origin in the BAT coordinates using the parameters bat_z and
origin_z. Therefore, what we actually type into the computer is this:

my_computer> : batfftimage event_rw/output/sw00100139000_4.dpi
event_rw/output /sw00100139000_4.img
../aux/sw00100139000sat.fits.gz detmask = event_rw/output/sw0010
0139000.mask bat_z=229.354992870092 origin_z=100.354994869232
teldef= sw_bat_2003-02-23.teldef
**
 batfftimage v1.6
--
 Input Image: event_rw/output/sw00100139000_4.dpi
 Background File: NONE
 Attitude File: ../aux/sw00100139000sat.fits.gz
 TelDef File: sw_bat_2003-02-23.teldef
 Aperture Image: CALDB
 Output Image: event_rw/output/sw00100139000_4.img
 Detector Mask: event_rw/output/sw00100139000.mask
 Mask Offsets: +0.000 X +0.000 Y +0.000 Z (cm)
 Source BAT_Z: +229.355 (cm)
BAT_Z Ang Origin: +100.355 (cm)
 Oversampling: 2 X 2 Y
Rebalance Images: YES
 Corrections: autocollim=YES handedness=left pcode=YES
flatfield=YES
--
 Sky image 1 written to event_rw/output/sw00100139000_4.img
 Sky image 2 written to event_rw/output/sw00100139000_4.img
 Sky image 3 written to event_rw/output/sw00100139000_4.img
 Sky image 4 written to event_rw/output/sw00100139000_4.img
 Sky images computed: 4
--
my_computer>:

The four sky images that result from running batfftimage image will each include the
entire BAT field-of-view.

2. Computing partial coding map

To make a map of the coding fraction for each sky pixel, use batfftimage as above but
with the parameter pcodemap = “YES”. A partial coding threshold can also be
specified with the pcodethresh parameter, which is a fraction between 0.0 and 1.0.

50

Partial coding values below pcodethresh are set to zero. To make this partial coding
map we type:

my_computer>: batfftimage event_rw/output/sw00100139000_4.dpi
event_rw/output/pcodemap.img ../aux/sw00100139000sat.fits.gz
pcodemap=YES
detmask = event_rw/output/sw00100139000.mask
bat_z=229.354992870092 origin_z=100.354994869232 teldef=
sw_bat_2003-02-23.teldef
**
 batfftimage v1.6
--
 Input Image: event_rw/output/sw00100139000_4.dpi
 Background File: NONE
 Attitude File: ../aux/sw00100139000sat.fits.gz
 TelDef File: sw_bat_2003-02-23.teldef
 Aperture Image: CALDB
 Output Image: event_rw/output/pcodemap.img
 Detector Mask: event_rw/output/sw00100139000.mask
 Mask Offsets: +0.000 X +0.000 Y +0.000 Z (cm)
 Source BAT_Z: +229.355 (cm)
BAT_Z Ang Origin: +100.355 (cm)
 Oversampling: 2 X 2 Y
 Partial Coding: YES Threshold: 0.010000
Rebalance Images: NO
 Corrections: autocollim=YES handedness=left pcode=NO
flatfield=YES
--
 Sky image 1 written to event_rw/output/pcodemap.img
 Sky image 2 written to event_rw/output/pcodemap.img
 Sky image 3 written to event_rw/output/pcodemap.img
 Sky image 4 written to event_rw/output/pcodemap.img
 Sky images computed: 4
--

3. Additional Example

batfftimage infile.dpi outfile.img attitude.fits

This would produce an output image from the input DPI and use the supplied attitude
file to derive a celestial coordinate system for the image. Since an infinite source
distance is assumed, the output image would have a size of 1736 x 930 pixels, based
on a detector plane size of 286 x 173 pixels and a coded mask size of 487 x 243
elements.

51

J. Batgse2dpi (internal BAT team tool)

This tool is used to convert calibration files produced by the old (preflight) BAT GSE
into the standard DPI format. It is unlikely to ever be used by the general scientific
user.

This program reads in an ascii list (infile) of FITS files generated by the "Blue rack"
GSE and combines them detector by detector to create a standard BAT Detector
Plane Image (DPI)(outfile). There are several options to how the input files are
used and these are described below under the discussion of the histmode and
windows input parameters.

The default for this program is to correct the counts in each detector for the
dead time in each particular detector module side (sandwich). The correction is
applied by adding up the total number of counts in each sandwich and multiplying by
the dead time per count to derive the dead time for that sandwich. The default dead
time per count is 100 µsec, but this can be changed using the deadpercount
parameter. The dead time is then subtracted from the exposure time (read from the
"EXPOSURE" keyword in the GSE FITS files) to derive the live time (i.e., live time =
exposure - dead time). The counts in each detector are multiplied by the ratio
exposure/live time. Since this ratio is always greater than or equal to one, the counts
written to the output file will always be greater than or equal to the actual counts
recorded by the GSE. The dead time correction can be turned off if deadapp is set
to "NO."

The primary HDU of the output file is the DPI, which is a two-
dimensional image with one number per detector and zeros in the gaps between
sandwiches. The second ("LIVETIME") HDU is a binary table containing, for each of
the 256 BAT detector module sides, the EXPOSURE, LIVE_TIME and DEAD_TIME.

Input Files (batgse2dpi):

Hidden parameters are listed in parentheses. If these are required, then the code will
use default values.

Required:
infile: Name of an ascii file containing the names of the sixteen FITS files to
be used in generating the dpi file. The names must be qualified with the
name of the directory in which they are locate if necessary.

 (windows): (Optional if histmode = “total") Name of FITS file containing the
range of the counts values to be used for each of the 128 detectors in
SPECTRUM extensions. An existing file in the correct format must be
provided if histmode="window." The format of the file is a binary table with
one row per detector, and columns giving BLOCK, DM, SIDE, and DET, along
with WINDOW_LOW and WINDOW_HIGH in ADU channels.

52

Output Files (batgse2dpi):

Required:
outfile: Output file name. Precede it with an exclamation point, !, (or \! on the
Unix command line), to overwrite a preexisting file with the same name (or set
the clobber parameter to YES). The contents of the output file are described
above in the general description of the tool.

Optional:
 detmask: Default value is "none". Name of the detector mask file if one is to

be generated. This is a rather crude detector mask, which only masks out
entire sandwiches or blocks, rather than individual detectors.

Parameters (batgse2dpi):

Hidden parameters are in parentheses and need not be supplied on the command
line. There are three additional parameters common to all FTOOLs which are
described at the beginning of this section. The brief descriptions of the parameters
given here are for reference only, for a full discussion of what the parameters do and
what values they can take refer to the online help (fhelp) for this tool.

Batgse2dpi Parameters

"YES" apply dead time correction.

Value used to compute dead time. Default value is
100 microseconds.

Name of the detector mask file

Name of FITS file containing the range of the
counts values to be used for each of the 128
detectors in SPECTRUM extensions.

 "total" for HITSMAP extension processing,
"window" for SPECTRUM processing.

 Output file name.

 File containing the names of the sixteen FITS files
to be used in generating the dpi file.

 (deadapp) [boolean]

 (deadpercount) [real]

 (detmask) [string]

 (windows) =" " [filename]

 histmode [string]

 outfile [filename]

 input [filename]

DescriptionParameter / Default / Data Type

53

Examples (batgse2dpi):

1. Generate a dpi file using the HITSMAP extensions. The example below uses the
default values for deadpercount and deadapp.

batgse2dpi 'file_list' 'hitsmap.out' histmode=total detmask=mask_t
clobber="Yes" chatter=2

2. Generate a dpi file using the SPECTRUM extensions. The example below uses
the default values for deadpercount and deadapp.

batgse2dpi 'file_list' 'spectrum.out' windows=windows.fits
histmode=window detmask=mask_w clobber="Yes" chatter=2

54

K. Bathotpix

Bathotpix locates hot pixels in a BAT detector plane image. Hot pixels can be a
source of noise in subsequent image processing steps, and so should usually be
excised.

This tool uses a histogram-based approach to locate the hottest and coldest
pixels in the image. Given a distribution of counts, the "centermost" portion is
selected as being good (the "keepfract" amount). If keepfract is 0.98, then 98% of
the detectors are selected as good. The selection window is further enlarged by
bands on either side using the guardfract and guardval parameters. Values outside
the selection window are considered to be "cold" (too low) or "hot" (too high).

The output of the tool is a quality map of the same dimensions as the detector
image. Values stored in the map are determined by the keywords below, but
typically a value of 0 indicates a good pixel. This mask can be input into
downstream image processing stages. The second extension, BADPIX, is a binary
table containing a list of bad pixels.

Users can submit an existing detector mask using the detmask
parameter. Pixels with bad quality are ignored by bathotpix in computing the
distribution and selection windows. By default, the input mask is logically AND'd
with the result, so that the output is the cumulative record of excised pixels. By default,
BAT detector gaps are also excised.

Input Files

Required:
infile: Input file name containing a detector plane image.

Optional:
(detmask): Input detector mask image. Pixels with bad quality are ignored in
the bathotpix analysis.

Output Files

Required:
outfile: Output detector mask image.

Parameters

Hidden parameters are in parentheses and need not be supplied on the command
line. There are three additional parameters common to all FTOOLs which are
described at the beginning of this section. The brief descriptions of the parameters
given here are for reference only, for a full discussion of what the parameters do and
what values they can take refer to the online help (fhelp) for this tool.

55

Bathotpix Parameters

Value to be used in detector mask maps to
indicate a cold pixel.

Value to be used in detector mask maps to
indicate a hot pixel.

Value to be used in detector mask maps to
indicate a bad pixel, such as a detector gap.

Value to be used in detector mask maps to
indicate a good pixel.

Threshold value.

If yes, then the input mask is merged with the
result before writing to the output.

If yes, then positions of BAT detector gaps are
excised.

Further amount to enlarge the selection window,
this time in counts.

Fractional amount to enlarge initially selected
detectors, relative to the median value.

Fraction of non-zero detectors to select as good,
initially.

Input detector mask image.

Output detector mask image.

Input file name containing a detector plane image.

 (coldval) = 1 [integer]

 (hotval) = 1 [integer]

 (badval) = 1 [integer]

 (goodval) = 0 [integer]

 (zerothresh) = 20.0 [real]

 (mergemask) = yes [boolean]

 (applygaps) = yes [boolean]

 (guardval) = 5.0 [real]

 (guardfract) = 0.25 [real]

 (keepfract) = 0.98 [real]

 (detmask) = "NONE" [string]

 outfile [filename]

 infile [filename]

DescriptionParameter / Default / Data Type

Examples (bathotpix):

1. Generate a "quality map"

Since the BAT is a coded aperture telescope, the pattern of the relative count rates for
each pixel of the detector array is the input to the FFT routine that produces a sky
image. For a clear image, the relative brightness of each pixel (1 pixel = 1 CZT
detector) must depend only on the exposure of the array through the coded aperture
mask and not on detector-specific features. We must therefore make sure that the
imaging programs know which detectors were either disabled (turned off) or were
“hot” (had an abnormally high count rate) at the time the data were taken. This
detector quality map is a simple binary table that indicates which detectors must be
excluded from the imaging calculations and is used as input for most imaging tools

56

such as batmaskwtevt, batmaskwtimg etc. The method for finding the
enable/disable map of interest is to locate the map whose timestamp is closest to the
time of the trigger. This map is a binary FITS table stored in the
sw[observationID]/data/bat/trend subdirectory for that observation. Enable/disable
detector maps have the name code “bdecb.” Thus this enable/disable detector map is
found in a (compressed) FITS file with a name like sw[obsID][segID]/data/bat/trend/
sw[obsID][segID]bdecb.fits.gz. For our example burst, the oservation ID is
“00100139” and the segment ID is “000”; thus, we must locate the FITS file named:
sw00100139000.011/data/bat/trend/sw00100139000bdecb.fits.

Now that we have located the appropriate enable/disable map, we can use it to
generate a detector quality map that is appropriate for the trigger time of our burst.
The tool bathotpix locates hot pixels (detectors with an abnormally high count rate) in
a BAT detector plane image. Hot pixels can be a source of noise in subsequent
image processing steps, and so should usually be eliminated from the image
calculation. bathotpix is well described in the help file for the tool, but basically it
looks for outliers in a histogram of the counts in the array. The user can adjust the
parameters specifying what fraction of pixels are considered good and what
thresholds are applied. Reasonable defaults are set for these hidden parameters
(see the help page bathotpix.html). When working with real (as opposed to simulated)
data, this tool should always be run before any imaging is carried out. Nearly all tools
which take DPIs or DPHs as inputs will accept a detector mask file.

The output of bathotpix can be combined with the enable/disable map generated in
flight to produce a unified detector mask file.

In the following example we run bathotpix with a new dpi file (see batbinevt recipe 1.)
and with the enable/disable file we just found to create a unified quality map:

bathotpix infile.dpi quality_map.mask detmask = apriori.mask

substituting in the right filenames we have:

my_computer>bathotpix event_rw/output/sw00100139000.dpi
event_rw/output/sw00100139000.mask detmask=
trend/sw00100139000bdecb.fits.gz
**
 bathotpix v1.2
--
 Input Image: event_rw/output/sw00100139000.dpi
--
 Image maximum value: 66
 Number of zeroes: 45
 Selected range: 2.000000 - 17.000000 (without guard)
 Selected range: 0.000000 - 26.250000 (with guard)
 Approximate median: 8.000000

57

 Report of HOT/COLD pixels (note row & col start at 0)

 Col. Row H/C Pix Value DETID Bl DM S Det
 127 49 H 62.0 23181 11 2 1 13
 205 104 H 66.0 12229 5 7 1 69
 23 161 H 27.0 1111 0 4 0 87
 Note: Cold pixels do not show up at chatter=2
 Mask image written to event_rw/output/sw00100139000.mask
--
my_computer>

This unified quality mask “sw00100139000.mask” is used for scientific analysis.

2. Additional Example:

bathotpix image.dpi image.mask detmask=apriori.mask

This would run the hot pixel code to find hot pixels in the image.dpi and convolve this
list with the apriori.mask files to produce a unified detector mask which could be input
to other tools.

58

L. Batid2xy
This is a basic tool which allows the user to transform back and forth between the two
systems for identifying BAT detectors. These are the Block / DM / Side / Detector
system (or DETID) and the geographical system (DETXY). One can either input a file
containing a list of detector identifiers to transform or can calculate the
transformations on the command line.

This code can either read in an input FITS file containing a list of detector
identifications or (x,y) positions, or it can read these values from the command line
(with the input file given as NONE).

The program calls a routine called batidconvert to figure out either the X
(column) and Y (row) numbers associated with the particular detector or the reverse
transformation. The output is always the full identification of the detector by DETID
Block DM SIDE DET X Y.

There are three basic modes of conversion, which are abbreviated BDSD (for
block, detector-module, side, detector), DETID and DETXY. The mode is selected
either by including a "BATIDMOD" keyword in the input file, or by supplying valid (> -1)
values of the detid, detx or dety parameters.

BDSD: In this mode, the conversion goes from detector identification to BAT X and
Y (location in the detector plane). The detector is identified by, respectively, block
(0:15), detector module (0:7), side (0:1), detector (0:127). In the input file, these are
supplied in columns named "BLOCK","DM","SIDE" and "DET." The keyword
"BATIDMOD" is set to "BDSD." On the command line, these are supplied through
the block, dm, side and det parameters. See example below.

DETID: In this mode, the conversion goes from detector identification to BAT X and
Y (location in the detector plane). The detector is identified by detector ID, which is
derived from the formula: detid = block*2048 + dm*256 + side*128 + detector. In the
input file, this is supplied in a column name "DETID." The keyword "BATIDMOD" is
set to "DETID." On the command line, this is supplied by setting the detid parameter
equal to the detector ID. See example below.

DETXY: In this mode, the conversion goes from BAT X and Y (location in the detector
plane) to detector identification. The detector location is given by BATX and BATY. In
the input file, these are supplied in columns named "DETX" and "DETY." The
keyword "BATIDMOD" is set to "DETXY." On the command line, these are supplied
through the detx and dety parameters. See example below.

Input Files

Required:
none.

59

Optional:
infile: Input file name. The input file must have an extension called "DETID"

and columns commensurate with the "BATIDMOD" keyword (see general
description above). If this keyword is missing, the code assumes that it is set to
the value "BDSD." See a description of how to create an input file under Example 1
below. If the input file is given as NONE, then the detector values to be converted are
supplied on the command line.

Output Files

Required:
none.

Optional:
outfile: Output file name. It is not currently implemented to write the

 output to a FITS file.

Parameters (batid2xy):

Hidden parameters are in parentheses and need not be supplied on the command
line. There are three additional parameters common to all FTOOLs which are
described at the beginning of this section. The brief descriptions of the parameters
given here are for reference only, for a full discussion of what the parameters do and
what values they can take refer to the online help (fhelp) for this tool.

 Output file name.

Specify the detector Y location in detector units,
starting from 0.

Specify the detector X location in detector units,
starting from 0.

 Specify the detector id (block*2048 + dm*256 +
side*128 + detector).

 Specify the detector number.

 Specify the detector module side.

 Specify the detector module number.

 Specify the block number.

 Input file name.

 (outfile) [filename]

 (dety) [integer, -1 to 1273]

 (detx) [integer, -1 to 285]

 (detid) [integer, -1 to 32767]

 (det) [integer, 0 - 127]

 (side) [integer, 0 - 1]

 (dm) [integer, 0 - 7]

 (block) [integer, 0 - 15]

 infile [filename]

Description of batid2xy parameterParameter / Default / Data Type

60

The block, dm, side and det parameters are ignored if a valid input file is specified or
if any of the detid, detx, or dety parameters are greater than -1.

For detx and dety, If the value provided corresponds to a gap in the detector
array, then the code returns a TNULL value for each detector identification.

Examples:

1. Input file.

batid2xy infile='detids.fits'

The input file must contain a DETID extension and a BATIDMOD keyword telling the
tool what format the input table is in (DETID or DETXY). There are instructions in the
help file for batid2xy for creating properly formatted files from ascii tables.

2. Command line

batid2xy NONE detx=259 dety=102

This would output the conversion from the given DETX and DETY to DETID and the
breakdown into Block, DM, Side, Detector.

DETID Block DM SIDE DET X Y
15299 7 3 1 67 259 102

See the online (fhelp) file for batid2xy for further examples.

61

M. Batmasktaglc

This tool is used to process a raw mask-tagged light curve to produce a scientifically
useful mask-tagged light curve. It is a specialized tool which does only one task.
Since it will be applied in the pipeline, it is unlikely to be needed by the general user.

The tool basically backs out the light curve processing that was carried out
in the flight code to derive a background subtracted light curve and appropriate
statistical error bars. A complete description of the algorithms used is found in
comment fields in the source code.

See the help file and comments in the code for a more complete description.

Input Files (batmasktaglc):

Hidden parameters are listed in parentheses. If these are required, then the code will
use default values.

Required:
infile: Name of a masktag FITS file containing a MASK_TAG_RATES
extension. This file is the raw mask tagged light curve as generated by the
flight code.

quadfile: Name of the input quadrant rate file, which must contain a RATES
extension. This file contains the uncorrected rates for each BAT quadrant on
the same time and energy scales as the raw mask tagged rates. This file
must be in the format produced by bat2fits from the flight derived raw
quadrant light curves. Further, this must be matched to the raw light curve by
matching the target ID of the mask tagged source in the file names. In other
words the raw light curve sw00020002000bmt_00024651hp.lc must be
matched to sw00020002000bmw_00024651.fits. The mask weight file
contains the weighting factor for each detector as well as the sums and sums
of squares of the weights which are used in the flight processing.

maskwt: Name of mask weight map file. The default value of this parameter
is "file," which means that the tool looks for a MASK_TAG_WEIGHT HDU in
the infile. This file is a detector plane histogram containing the flight
generated weight for each detector.

 (ebounds): The location of the EBOUNDS file describing the energy ranges in

the light curves. The default is to use an EBOUNDS extension that is part of the
infile.

Optional:
(detmask): Optional input detector plane mask. This is used to exclude
detectors that are disabled from contributing to the light curves and errors.

62

This file should always be a flight code generated detector mask which
represents only detectors actually turned off, rather than a mask derived
from ground processing.

Output Files (batmasktaglc):

Required:
outfile: Output light curve. The output file is a standard light curve file,
containing TIME, RATE, ERROR and BACKGROUND columns, each entry
of which is a four-dimensional vector, with one number for each of the energy
ranges described in the EBOUNDS extension.

Parameters (batmasktaglc):

Hidden parameters are in parentheses and need not be supplied on the command
line. There are three additional parameters common to all FTOOLs which are
described at the beginning of this section. The brief descriptions of the parameters
given here are for reference only, for a full discussion of what the parameters do and
what values they can take refer to the online help (fhelp) for this tool.

Batmasktaglc Parameters

Comma-separated list of corrections to apply to
the mask weighting:
 "none" if no corrections are to be applied.
 "flatfield" basic flat fielding correction accounting
for both cosine-type and r-squared-type effects
"cosine" cosine effects of off-axis illumination only
 "pcode" partial coding effect only.

The location of the EBOUNDS file describing the
energy ranges in the light curves.

Optional input detector plane mask.

Output light curve.

Name of mask weight map file.

Name of the input quadrant rate file.

Name of mask tagged rate file.

 (corrections) = "none" [string]

 (ebounds) = "file" [string]

 (detmask) = "none" [string]

 outfile [filename]

 maskwt [string]

 quadfile [filename]

 infile [filename]

DescriptionParameter / Default / Data Type

63

Example (batmasktaglc)::

batmasktaglc "raw mask weight file” “quadrant rates file" "mask
wt.map file"
"outfile" ebounds="ebounds file"

In this case there is no EBOUNDS extension on any of the input files so an external
EBOUNDS must be specified. The output is a corrected mask-tagged light curve.

64

N. Batmaskwtevt / Batmaskwtimg

These are sister tools and so are described together. These tools use a forward
projection (ray tracing) algorithm to determine the weighting factor for each detector for
a given source position. See the discussion of Mask Tagging in the Introductory
section of this document.

The primary difference in the user interface is that while batmaskwtevt
requires an input event file to be specified, batmaskwtimg takes no input file, but the
user must specify an output file. In other words, batmaskwtevt will calculate a mask
weighting for every event in the input file and write this to the MASK_WEIGHT column
in the input file (creating the column if it doesn’t exist). Alternatively, batmaskwtimg
calculates the weighting for a hypothetical detector plane and output this weighting
map.

Currently, this tool is geared towards applying mask weighting for sources in
instrument coordinates. Eventually, when the spacecraft attitude file is
incorporated, it will be possible to specify the coordinates of a source in RA/DEC,
and they will be automatically converted to instrument coordinates.

Input Files

Hidden parameters are listed in parentheses. If these are required, then the code will
use default values.

Required:
infile: Input event file name. This file must contain BAT events, and have at
least the columns TIME, MASK_WEIGHT, DETX and DETY. The MASK_WEIGHT
column is overwritten by this tool, so the file must be writeable.

 (aperture): BAT aperture map file name, which contains the coded mask
pattern and alignment parameters. If the CALDB database is set up, then
CALDB can also be specified.

(detmask): Name of a detector quality map file. This should be an image file
with the same dimensions as the detector plane map. A pixel value of 0
indicates the detector is enabled, and a non-zero value indicates disabled. A
default value of NONE implies all detectors are on, except for the BAT detector
gap regions. This map is only used for computing the fraction of illuminated
pixels. The output mask weight map contains a value for all detectors in the
array, regardless of detmask.

 (teldef): BAT instrument telescope description file, which defines
instrument-to-spacecraft alignments. Must be specified when celestial
coordinates are provided. If the CALDB database is set up, then CALDB can
also be specified.

65

Optional:
 attitude: File name of Swift attitude history, or NONE if none is used.

 (incatalog): (batmaskwtimg ONLY) Input source catalog containing source
positions. The catalog should contain one row per source. A value of NONE
indicates that the source coordinates should be taken from the command
line.

Output Files

Required:
outfile: (batmaskwtimg ONLY) Output file name.

Optional:
 (auxfile): (batmaskwtevt ONLY) Specifies an auxiliary output file which

describes the position of the source in the BAT field of view as a function of
time, including various ray tracing diagnostics. The columns are TIME (MET in
seconds); BAT_X/Y/ZOBJ (source position in instrument coordinates in cm);
IMX/Y (source tangent plane coordinates); PCODEFR (partial coding fraction);
NGOODPIX (number of enabled detectors); MSKWTSQF (normalization
parameter). One row is created for each ray tracing operation performed. This
file is required for response matrix generation during slews.

Parameters

Hidden parameters are in parentheses and need not be supplied on the command
line. There are three additional parameters common to all FTOOLs which are
described at the beginning of this section. The brief descriptions of the parameters
given here are for reference only, for a full discussion of what the parameters do and
what values they can take refer to the online help (fhelp) for this tool.

The table is found on the next page. Note that parameters that apply only to
batmaskwtevt are shaded in yellow and those that apply only to batmaskwtimg are
shaded in pink.

66

For ground testing with a near-field srce. (origin_z) = 0 [real]

 Mask weight technique software gain
correction factor.

 Value to place in image cells where
detector gaps are located.

BAT instrument telescope description file

 Size of detector subpixels used in
computing mask weighting in cm.

 Size of internal event buffer for process.

 Thickness of the lead mask tiles in cm.

 Translational offset to apply to mask
along the BAT_X/Y/Z coordinate.

 Default bat_z position if bat_z is zero.

 Name of mask weight column.

 Col name of source name in input cat.

 Col name of 2nd coord value in input cat.

 Col name of first coord value in input cat.

 Input source catalog containing source
positions.

 Position of the source in BAT_Z coords.

 Specifies an auxiliary output file.

 Name of a detector quality map file.

 Comma-separated list of corrections to
apply to the mask weighting (see below).

 Adjust so that additive mean is zero.

 Time associated with the mask
weighted image.

 Method of specifying the source
coordinates (see below for details)

BAT aperture map file name.

Declination of source in decimal degs.

 Right ascension of source in dec degs,
or other position (see coord_type below)

 File name of Swift attitude history.

 Output image file name.

 Input event file name.

 (gapval)=0.0 [real] (batmaskwtimg ONLY)

 (namecol) = "NAME" (batmaskwtimg)

 (deccol) = "DEC_OBJ" (batmaskwtimg)

 (racol) = "RA_OBJ" (batmaskwtimg)

 (incatalog) = "NONE" (batmaskwtimg)

 (time) = 0 [real] (batmaskwtimgONLY)

 outfile [filename] (batmaskwtimgONLY)

 infile [filename] (batmaskwtevt ONLY)

 (maskwtswgain) = 0.04 [real]

 (teldef) = "CALDB" [string]

 (subpixsize) = 0.02 [real]

 (buffersize) = 32768 [int] (batmaskwtevt)

 (maskthickness) = INDEF [string]

 (maskoffx / y / z) = 0.0 [real]

 (distance) = 1.0e7 [real]

 (maskwtcol) = "MASK_WEIGHT" [string]

 (bat_z) = 0 [real]

 (auxfile) ="NONE" [string] (batmaskwtevt)

 (detmask) = "NONE" [string]

 (corrections) = "default" [string]

 (rebalance) = YES [boolean]

 (coord_type) = "sky" [string]

 (aperture) = "CALDB" [filename]

 dec [real]

 ra [real]

 attitude [string]

DescriptionParameter / Default / Data Type

67

Further description of the coord_type parameter:

Both tools call for an attitude file and a source position. The default coordinates for
the source position are RA and declination in degrees. This default requires a valid
attitude file. Alternatively the user can specify the source location in another system
(such as image tangent plane coordinates), in which case attitude=NONE is a valid
parameter specification. The coord_type parameter (default “sky”) is used to specify
the system for the input source position according to the table below.

 COORD_TYPE RA parameter DEC parameter Units
 --
 sky Right Ascension Declination deg
 cartesian BAT_X position BAT_Y position cm
 unit BAT_X unit vector BAT_Y unit vector none
 fswlonlat Phi (flt. software) Theta deg
 grmclonlat Longitude (GRMC) Latitude deg
 tanxy Tan(theta_x) Tan(theta_y) none

The coordinate types "fswlonlat" and "grmclonlat" are coordinate systems used in
the flight software and instrument simulators. The coordinate type "tanxy" gives the
tangent-plane angles of the source. Where necessary the source distance and/or
BAT_Z position must also be provided (in centimeters).

Further description of the corrections parameter:

Comma-separated list of corrections to apply to the image, or "none" if no
corrections are to be applied. The possible corrections are:

none: No corrections are to be applied.

default: Default corrections, which is shorthand for:
"flatfield,ndets,pcode,maskwt"

 autocollim: Correct plate scale for autocollimation effect

 flatfield: Apply corrections for projection effects

 maskwt: Apply corrections for mask weighting technique

 ndets: Normalize by number of exposed detectors

 pcode: Apply partial coding correction

subpixelate: Use slower but potentially higher fidelity algorithm

68

forward: Reserved for clean procedure

unbalanced: Reserved for clean procedure

nearfield: Near field corrections for ground calibration analysis only

The "pcode" and "ndets" corrections require the user to supply the detmask keyword.

Examples:

1. Apply mask weighting

The tools used to generate the mask weighting information are batmaskwtevt and
batmaskwtimg. Both of these tools use a forward projection (ray tracing) algorithm to
determine the weighting factor for each detector for a given source position. The
primary difference between the two tools is in the user interface: batmaskwtevt
requires an input event file to be specified and calculates the mask weight for each
individual event. batmaskwtimg creates the mask weight (shadow function) for the
entire detector array at one time and outputs the information in DPI format. In other
words, batmaskwtevt will calculate a mask weighting for every event in the input file
and will write these weighting values to the MASK_WEIGHT column in the input file
(creating the column if it doesn’t exist). Alternatively, batmaskwtimg calculates the
weighting for a hypothetical detector plane and outputs this weighting as a map.

The basic form of the command we’ll need is:

batmaskwtevt input_file attitude_file ra dec detmask=qmap_file

Where input_file = event_rw/sw00100139000bevshpsuf.evt and the attitude
files are found in the data/aux subdirectory with the suffix “sat.fits” The appropriate file
for this example is thus attitude_file=data/aux/sw00100139000sat.fits.gz.
The RA and dec position of the source can be extracted from keywords in the event
file’s primary header. Looking at the header information in the event file we’ve been
using, event_rw/sw00100139000bevshpsuf.evt, we extract the following position:

RA_OBJ = 147.4987 / [deg] RA Object
DEC_OBJ = 10.24879 / [deg] Dec Object

Finally, we will also use the quality map we made in the recipe for bathotpix. We thus
type:

my_computer> batmaskwtevt event_rw/sw00100139000bevshpsuf.evt
../aux/sw00100139000sat.fits.gz ra=147.4987 dec=10.24879 detmask =
event_rw/output/sw00100139000.mask bat_z=229.354992870092
origin_z=100.354994869232 teldef = sw_bat_2003-02-23.teldef

69

**
 batmaskwtevt v1.3
--
 Input Events: event_rw/sw00100139000bevshpsuf.evt
 Attitude File: ../aux/sw00100139000sat.fits.gz
 TelDef File: sw_bat_2003-02-23.teldef
 Aperture Image: CALDB
 Detector Mask: event_rw/output/sw00100139000.mask
 Corrections: flatfield pcode ndets maskwt
 Coordinates: sky
 Longitude: 147.498700 (deg) Latitude: 10.248790 (deg; sky)
 Z Origin: +100.355 cm
--
 Number of Events Processed: 281584
--
my_computer>

and a column named “MASK_WEIGHT” is added to the event file.

2. Mask weighting of an event file with an input attitude file.

batmaskwtevt sw00000001000bnone028.unf attitude.dat 257.5500 -
28.118

This will calculate the mask weighting for a source at RA=257.5500, declination =
-28.118 and fill the MASK_WEIGHT column in the input file.

3. Mask weighting of an event file without an input attitude file. The source position
is specified in BAT image theta and phi.

batmaskwtevt sw00000001000bnone028.unf attitude.dat -45.4293
16.1387 coord_type=fswlonlat

4. Create a mask weight image for a source at RA=257.5500, declination =
-28.118

batmaskwtimg maskwt.img attitude.dat 257.5500 -28.118

70

O. Batsumdph

This is a simple tool which sums together two or more DPHs in a single file to
produce an output DPH. This functionality is also present in batbinevt, but this tool
remains as a simpler way to accomplish this task. The only option to the tool is the
row number range in the DPH file.

Input Files

Required:
infile: Input file name. The file must contain a BAT_DPH extension.

Output Files

Required:
outfile: Output file name. Precede it with an exclamation point, !, (or \! on the
Unix command line), to overwrite a preexisting file with the same name (or set
the clobber parameter to YES).

Parameters

Hidden parameters are in parentheses and need not be supplied on the command
line. There are three additional parameters common to all FTOOLs which are
described at the beginning of this section. The brief descriptions of the parameters
given here are for reference only, for a full discussion of what the parameters do and
what values they can take refer to the online help (fhelp) for this tool.

 The ranges of rows, from the binary
table of the BAT_DPH extension of the
original file, to be summed.

 Output file name.

 Input file name.

 rows

 outfile [filename]

 input [filename]

DescriptionParameter / Default / Data Type

Example:

batsumdph infile.dph sumfile.dph rows="1-3,5-7"

This would sum together rows 1-3 and 5-7 into a single output DPH.

71

P. Battblocks

This is a primary tool for higher level analysis of burst data. It is primarily designed to
operate on an event file, but can also be used to analyze a light curve. The output is a
GTI file.

Battblocks estimates interesting time intervals (GTIs) based on time variable
event or rate data. It does this using the Bayesian Block algorithm, which is
intended to robustly compute time intervals based on Bayesian analysis. (see
Scargle 1998, ApJ, 504, 405) There is a more detailed description in the tool help
file. The user provides event data or a single-channel binned light curve.

The battblocks tool passes BAT rate data and light curves through a Bayesian
Block algorithm to search for and characterize the bursts. Bayesian Blocks is a
technique that detects and characterizes localized structures (bursts) in time series
data. The algorithm determines the most probable segmentation of the input data into
time intervals during which the photon arrival rate is statistically consistent with
constant. Thus the lightcurve is reduced to a series of time intervals where the count
rate is essentially steady. These time “blocks” will be shorter in duration where the
rate change is fast such as during a burst and longer during times of slowly changing
background rates.

The light curve should be a standard OGIP light curve FITS file (i.e. contain the
proper HDUCLASn keywords which identify whether the light curve is background
subtracted or not). Both RATE and COUNT type light curves are supported. It must
be possible to multiply RATE by the TIMEDEL per-bin exposure to arrive at counts
per bin. If the light curve has been background subtracted, then the ERROR column
must be present.

Battblocks relies on the keyword information in the input file as being correct.
In particular, HDUCLAS1 should be "EVENTS" or "LIGHTCURVE", depending on
the input file type. For light curves, HDUCLAS2 should be "NET" or "TOTAL"
depending on whether the file is background subtracted. For light curves, HDUCLAS3
should be "RATE" or "COUNT", although the user can override this with the
hduclas3 parameter. There must also be a way to determine the per-sample
exposure, either with the TIMEDEL keyword, or a TIMEDEL/EXPOSURE column.

The Bayesian block algorithm can be used to estimate time intervals for any
time series. For bursts, it can also estimate several measures of the burst duration,
and the interval of the peak flux. The calculated duration of a burst depends, of course,
on a judgment about when the burst starts and when it stops. We need a consistent
method for making this determination, however, so that valid comparisons of the
durations of different bursts can be made. The BAT tool battblocks is used to
characterize the time structure of a burst and thus provides a consistent means for
measuring the duration of every burst in the catalog. The burst duration is estimated
by locating bracketing background intervals, and then locating intervals which enclose
90% and 50% of the total counts. These are stored in the durfile with extension
names GTI_T90 and GTI_T50. Users should be aware that these algorithms are
sensitive to systematic variations in the background. Some care must be taken to

72

filter the incoming light curve. Users an also choose their own percentage fluence
with the txx keyword; the result is stored in the GTI_TXX extension.

The calculated duration of a burst also depends on the lightcurve used. The
user should look at the final, complete lightcurve which contains times between 24
seconds before to 185 seconds after the burst. Since some bursts are long enough
that the gamma-ray emission continues during the time of the slew and even after
settling on target, the initial light curves sent down in the TDRSS messages may not
contain the complete burst. In such cases, the user will need use the final lightcurve
derived from data sent to the ground during Malindi passes.

The interval of the peak flux is estimated by sliding a time window across the
light curve or event data and finding the epoch with the highest counts. The user can
select the size of the window. The corresponding GTI is written to durfile with the
extension name 'GTI_PEAK'.

For these measures, the user can request that battblocks perform
background subtraction. The background is estimated based on the first and last
Bayesian block intervals, and linearly interpolated to other points.

The global analysis time grows quadratically: as the input file size doubles,
the computation time quadruples, and so on. Users can perform a local Bayesian
block analysis by setting tlookback to a non-zero time window size. Only data
within the time window at a particular instant are considered for the analysis at
that instant. When tlookback is used, the resulting blocks are analyzed in a second
pass to further consolidate blocks larger than the window size. Users of event data
can also adjust the nspill parameter to decimate the events, at the expense of
decreasing the time resolution proportionately.

Input Files (battblocks):

Required:
infile: Input file name containing event data or light curve data. Events must
be sorted in increasing time order. Light curve data must be OGIP-format
(containing the HDUCLASn keywords), and either have the columns TIME and
COUNTS (binned counts); or TIME, RATE and ERROR (binned data with error
bars). Only single channel light curves are supported.

Output Files (battblocks):

Required:
outfile: Name of output good time interval file. The primary output is a file
which contains the interesting time intervals calculated for the event file in the
form of a GTI extension. This GTI extension can then be used as input to
batbinevt to produce either a light curve or PHA-II file based on these time
intervals.

73

Optional:
(durfile): Name of output duration measures. If durfile is 'NONE' then the
duration measures are not computed or written. If an optional output durfile is
specified, then the tool will also output GTIs corresponding to the durations T90
and T50 (plus an optional user specified duration measure) derived from the
data. GTI tables with extensions 'GTI_T90', 'GTI_T50' and 'GTI_PEAK' are
created. Note that the method is sensitive to background fluctuations so the
user should be careful to filter the input file.

(diagfile): Diagnostic output file, used for internal debugging purposes. NONE
indicates no diagnostic output should be made.

Parameters (battblocks):

Hidden parameters are in parentheses and need not be supplied on the command
line. There are three additional parameters common to all FTOOLs which are
described at the beginning of this section. The brief descriptions of the parameters
given here are for reference only, for a full discussion of what the parameters do and
what values they can take refer to the online help (fhelp) for this tool.

 The table is found on the next page.

74

Battblocks Parameters

Diagnostic output file, used for internal
debugging purposes.

Default value of the HDUCLAS3 keyword.

Name of the light curve per-bin exposure
column.

Name of the light curve gaussian error
column.

Name of the light curve rate or counts
column.

Name of the light curve time column.

Automatic background subtraction, for
computation of duration measures and
fluence estimates.

 Log parameter prior for the number of
"change points" between Bayesian
blocks.

 Internal time quantization size.

A non-zero value indicates the lookback
time window in seconds, for the local
bayesian block analysis.

Size of sliding window, in seconds, used
to determine the interval of the peak count
rate.

User-specified percentage of burst to
estimate the duration for.

Boolean which determines whether the
Bayesian blocks computation is per-
formed using Gaussian statistics or not.

Number of events to skip per analysis
cell.

 Name of output duration measures.

 Name of output good time interval file.

Input file name containing event data or
light curve data.

 (diagfile) = NONE [string]

 (hduclas3) = "INDEF" [string]

 (expocol) = "INDEF" [string]

 (errcol) = "ERROR" [string]

 (countscol) = "INDEF" [string]

 (timecol) = "TIME" [string]

 (bkgsub) = NO [boolean]

 (ncp_prior) = 6.0 [real]

 (timedel) = 100e-6 [real]

 (tlookback) = 0.0 [real]

 (tpeak) = 1.0 [real]

 (txx) = 0.0 [real]

 (gaussian) = INDEF [string]

 (nspill) = 128 [integer]

 (durfile) = 'NONE' [filename]

 outfile [filename]

 infile [filename]

DescriptionParameter / Default / Data Type

75

Examples (battblocks):

1. Estimate burst duration using a BAT TDRSS light curve.

BAT sends a light curve down through TDRSS several times. The final version
includes all counts received by BAT from 24 seconds before the burst to 185 seconds
after. There are 4 energy channels. The time binning varies and is densest (0.128
seconds) closest to the trigger time and least dense (4.096 seconds) well after the
trigger.

The data for these TDRSS light curves can be found in files that end with “msb.lc(.gz)”.
For example, TDRSS light curves for GRB 100139 can be found in the file named
sw00100139000msb.lc.gz

The BAT TDRSS lightcurve is found in the TDRSS_LC extension of the FITS file. The
contents are:

 TIME-the Mission Elapsed Time in Seconds from the Swift Reference Time.

 RELTIME-time since burst, ranging from -24 to 185 seconds.

 TIMEDEL-a column describing the time between successive measurements, which
 is variable for the BAT light curve, ranging from 0.128 to 4.096 seconds.

 RAW_COUNTS-An array of four vectors, each with same number of time steps and
 timedels as the TIME column, one vector for each of the 4 BAT energy bands
 reporting the raw counts received during that time interval.

 RATE-An array of four vectors, each with same number of time steps and timedels
 as the TIME column, one vector for each of the 4 BAT energy bands reporting the
 count rate for that time interval. Raw counts are normalized by timedel to get the rate
 in counts/s.

 ERROR-The error on the rate per time step.

 TOT_COUNTS-For each time step, the sum of all four BAT raw_counts.

 TOT_RATE-For each time step, the sum of all four BAT rates.

 TOT_RATE_ERR-the error on the total count rate per time step.

In the example below, we show a call to battblocks using the tot_rate column of the
TDRSS light curve file for burst 100139:

my_computer> battblocks sw00100139000msb.lc.gz bb.gti
76

durfile='dur.gti' bkgsub=yes countscol=TOT_RATE clobber=yes
 **
 battblocks v1.2
 --
 Input Data: sw00100139000msb.lc.gz
 Output GTI: bb.gti
 Events to Skip: 128 Changepoint log(prob) Prior: 6.000000
 Internal Tick: 1.000000e-04 s
 Lookback time: 0 s
 Bkg. Subtract?: yes (for fluence/T50/T90 calculations)
 --
 Estimated T90 duration: 2.688 s +/- 0 s
 Estimated T50 duration: 1.536 s +/- 0 s
 Estimated Peak Interval: MET 108579195.02399981 +/- 0.500000 s
 Estimated background rate 1: 497.794 near MET
108579183.680000 s
 Estimated background rate 2: 505.934 near MET
108579290.112000 s
 Estimated total duration: 2.944 s (for data selection)
 (from MET 108579194.560000 to MET 108579197.504000)
 Estimated total fluence: 45575.859515 count
 Created GTI with 5 entries
 --

 Outputs: bb.gti and dur.gti

 As shown above, the battblocks tool reports estimates for T90, T50, peak Interval,
total duration and total fluence for the burst. The output files generated by battblocks
are also important. In the above example, these file names are bb.gti (bb= “Bayesian
block”) and dur.gti (dur =“duration”).

 To find out the contents of these files, type

my_computer>fstruct dur.gti
No. Type EXTNAME BITPIX Dimensions(columns) PCOUNT GCOUNT

 0 PRIMARY 16 0 0 1

1 BINTABLE GTI_T90 8 16(2) 1 0 1

 Column Name Format Dims Units TLMIN TLMAX
 1 START D s
 2 STOP D s

 2 BINTABLE GTI_T50 8 16(2) 1 0 1

 Column Name Format Dims Units TLMIN TLMAX
 1 START D s
 2 STOP D s

 3 BINTABLE GTI_PEAK 8 16(2) 1 0 1

77

 Column Name Format Dims Units TLMIN TLMAX
 1 START D s
 2 STOP D s

 4 BINTABLE GTI_TOT 8 16(2) 1 0 1

 Column Name Format Dims Units TLMIN TLMAX
 1 START D s
 2 STOP D s

This tells you that the first extension contains the GTI_T90 information as a start and
stop time. The second extension contains the GTI_T50 information again as a start
and stop time. Finally, the third extension reports the block for which the burst
experiences its peak total rate (GTI_PEAK) and provides the stop and start time of that
Bayesian block.

 Using the "fdump" command to see the values of the columns in the file:

my_computer> fdump prhead=no dur.gti
 Name of optional output file[STDOUT]
 Names of columns[]
 Lists of rows[-]

 START STOP
 s s
 1.085791945599998E+08 1.085791972479999E+08

 START STOP
 s s
 1 1.085791951999998E+08 1.085791967359999E+08

 START STOP
 s s
 1 1.085791943999998E+08 1.085791956479998E+08

The start and stop times for the Bayesian blocks calculated can be found in bb.gti

my_computer> fstruct bb.gti
No. Type EXTNAME BITPIX Dimensions(columns) PCOUNT GCOUNT

 0 PRIMARY 16 0 0 1
 1 BINTABLE STDGTI 8 16(2) 5 0 1

 Column Name Format Dims Units TLMIN TLMAX
 1 START D s
 2 STOP D s

78

my_computer> fdump prhead=no bb.gti
Name of optional output file[STDOUT]
Names of columns[]
Lists of rows[-]

 START STOP
 s s
 1 1.085791728000000E+08 1.085791945599998E+08
 2 1.085791945599998E+08 1.085791948799998E+08
 3 1.085791948799998E+08 1.085791973759999E+08
 4 1.085791973759999E+08 1.085791975039999E+08
 5 1.085791975039999E+08 1.085793827200000E+08

Examining the values in these files, or overplotting them on the TDRSS light curve can
guide the user in deciding whether to update the parameter values used by the tool to
get a more accurate estimate of the time scales of interest.

Caveats and Pointers:

Users should be aware that these algorithms are sensitive to systematic variations in
the background. Some care must be taken to filter the incoming light curve. For
example, consider TDRSS light curves (raw BAT rates). If there is a noise spike due
to a noisy detector, or if during the slew a bright source enters the field of view, the
raw rate will change, and this can effect the results of battblocks. The background is
estimated based on the first and last Bayesian block intervals, and linearly
interpolated to other points.

For event-based light curves, these sources of background can be subtracted.
However, an N-sigma statistical fluctuation could remain, possibly significant enough
to be considered as "source". If the real burst is 0.01 seconds long, but the
fluctuation happens 100 seconds later, then T90 might be set to 100 seconds.

Users can also produce time bin edges defined by the percentage of the total
fluence contained within each time bin. To do this, run battblocks with the 'txx'
keyword; the result is stored in the GTI_TXX extension. For example, if you want the
time bounds defining 67% of the fluence, call battblocks with txx=67.0. Note the value
of this keyword runs from 0-100 and not 0.0-1.0.

The interval of the peak flux is estimated by sliding a time window across the
light curve or event data and finding the epoch with the highest counts. The user can
select the size of the window. The corresponding GTI is written to 'durfile' with the
extension name 'GTI_PEAK'

The global analysis time grows quadratically: as the input file size doubles, the
computation time quadruples, and so on. Users can perform a local Bayesian block
analysis by setting tlookback to a non-zero time window size. Only data within the
time window at a particular instant are considered for the analysis at that instant.
When tlookback is used, the resulting blocks are analyzed in a second pass to
further consolidate blocks larger than the window size. Users of event data can also
adjust the 'nspill' parameter to decimate the events, at the expense of decreasing the

79

time resolution proportionately.

Summary: by running battblocks, looking at the results for the validity of the default
parameters over which the calculation is done, and then rerunning, if necessary for
better estimates, results in the user having the necessary information to characterize
the GRB based on the TDRSS BAT lc data.

2. Partition data into Bayesian Blocks

 battblocks burst.evt burst_bb.gti

 3. Extraction of Bayesian blocks from a light curve; extraction of
 burst durations, including a user specified level of 68.3% of the
 burst (T90 and T50 intervals are always computed)

 battblocks burst.lc burst_bb.gti durfile=burst_dur.gti txx=68.3

80

IV. SAMPLE ANALYSIS CHAIN

This analysis chain starts with a time sorted and filtered event file and derives a sky
image and source list along with mask tagged light curves and spectra. This chain
does not use batdrmgen and battblocks, but these should be added.

(1. Apply the energy calibration to the event file)
bateconvert sw00074651000bgrb.unf sw00074651000bcbo0001g0001.dph
calmode=LINEAR clobber=yes

bateconvert v2.00 completed
Input events file is sw00074651000bgrb.unf
Calmode: LINEAR
5861791 events converted from PHA to PI and written to file
sw00074651000bgrb.unf

(2. Make a DPI from the Event file)
batbinevt sw00074651000bgrb.unf sw00074651000bgrb.dpi DPI 0 u -
tstart=101807671.616000 tstop=101807672.640000 clobber=yes
**
 batbinevt v1.3
--
 Input Events: sw00074651000bgrb.unf
 Output File: sw00074651000bgrb.dpi (DPI)
 Detector Mask: NONE
 Time Range: 101807671.616000 to 101807672.640000
(requested)
 Time Range: 101807671.616000 to 101807672.640000 (actual)
Apply Weighting?: NO Energy Column: PI
 Energy Bins: -
 Output Units: COUNTS
 Binning Method: UNIFORM
 Time Bin Size: 0.000000 (s)
--
 DPIs written to sw00074651000bgrb.dpi
 EBOUNDS written to sw00074651000bgrb.dpi
 Number of Rows Processed: 5861791
 Number Accepted/Rejected: 17130/5844661
 Time Bins: 1 Energy Bins: 1
--

(3. Make a sky image from the DPI)

batfftimage sw00074651000bgrb.dpi sw00074651000bgrb.img NONE
bat_z=0.000000 clobber=yes
**
 batfftimage v1.3
--
 Input Image: sw00074651000bgrb.dpi

81

 Background File: NONE
 Attitude File: NONE
 TelDef File:
/home/heasfs/krimm/Swift/batgsw/krimm/headas/i686-pc-linux-
gnu/refdata/sw_bat_2003-02-23.teldef
 Aperture Image:
/home/heasfs/krimm/Swift/batgsw/krimm/headas/i686-pc-linux-
gnu/refdata/bat_aperture-2003-08-28.img
 Output Image: sw00074651000bgrb.img
 Detector Mask: NONE
 Mask Offsets: +0.000 X +0.000 Y +0.000 Z (cm)
 Source BAT_Z: Infinity
 Oversampling: 2 X 2 Y
Rebalance Images: YES
 Corrections: autocollim=YES
--
 Sky image 1 written to sw00074651000bgrb.img
 Sky images computed: 1
--

(4. Find sources in the sky image)

batcelldetect sw00074651000bgrb.img sw00074651000bgrb.src 8.0
clobber=yes
**
 batcelldetect v1.4
--
 Input Image: sw00074651000bgrb.img
 Output Catalog: sw00074651000bgrb.src
 Input Catalog: NONE
Part. Coding Map: NONE
 Back. Window: CIRCLE Radius: 30
 Source Window: CIRCLE Radius: 6
 SNR Threshold: 8.000000
 Number of Iter.: 2
Min. Num. Pixels: 20
--
 Found 1 Images
 Analyzing Image: 1
 Detection Iteration 1
 Found 10 cumulative pixels
 Detection Iteration 2
 Found 10 cumulative pixels

 Detected 1 sources

 IMXcent IMYcent IMXwid IMYwid Peak Cts Bkg Var SNR
 0.20192 0.20701 0.00291 0.00291 1536.7 92.8 16.4
--
Theta is now 16.128608 (degrees)
Phi is now -45.712618 (degrees)

82

(5. Carry out the mask weighting in the event file)

batmaskwtevt sw00074651000bgrb.unf NONE ra=-45.712618
dec=16.128608 coord_type=fswlonlat distance=10000000.000000
clobber=yes
**
 batmaskwtevt v1.1
--
 Input Events: sw00074651000bgrb.unf
 Aperture Image:
/home/heasfs/krimm/Swift/batgsw/krimm/headas/i686-pc-linux-
gnu/refdata/bat_aperture-2003-08-28.img
 Detector Mask: NONE
 Corrections:
 Subpixel Size: 0.020000
 Effective edge depth: 0.200000
 Coordinates: fswlonlat
 Longitude: -45.712618 (deg) Latitude: 16.128608 (deg;
fswlonlat)
 BAT_X BAT_Y
BAT_Z
 Cartesian +1939720.238841 +1988581.126014
9606405.701421 (cm)
 Unit Vect. +0.193972 +0.198858
0.960641 (cm)
 Tangent +0.201919 +0.207006
--
 Number of Events Processed: 5861791
--

(6. Create a mask-tagged light curve with 64 msec time binning)

batbinevt sw00074651000bgrb.unf sw00074651000bgrb.lc LC 0.064 u -
tstart=101807371.616000 tstop=101807971.616000 clobber=yes
**
 batbinevt v1.3
--
 Input Events: sw00074651000bgrb.unf
 Output File: sw00074651000bgrb.lc (LC)
 Detector Mask: NONE
 Time Range: 101807371.616000 to 101807971.616000
(requested)
 Time Range: 101807552.000000 to 101807971.616000 (actual)
Apply Weighting?: YES Energy Column: PI
 Energy Bins: -
 Output Units: RATE
 Binning Method: UNIFORM
 Time Bin Size: 0.064000 (s)
--
 Light curve written to sw00074651000bgrb.lc
 EBOUNDS written to sw00074651000bgrb.lc

83

 Number of Rows Processed: 5861791
 Number Accepted/Rejected: 5689233/172558
 Time Bins: 6557 Energy Bins: 1
--

(7. Create a four channel mask-tagged light curve with 64 msec time binning)

batbinevt sw00074651000bgrb.unf sw00074651000bgrb.4lc LC 0.064 u
/local/data/gcn3a/caldb/data/swift/bat/bat_ebounds4-2003-08-
19.fits tstart=101807371.616000 tstop=101807971.616000 clobber=yes
**
 batbinevt v1.3
--
 Input Events: sw00074651000bgrb.unf
 Output File: sw00074651000bgrb.4lc (LC)
 Detector Mask: NONE
 Time Range: 101807371.616000 to 101807971.616000
(requested)
 Time Range: 101807552.000000 to 101807971.616000 (actual)
Apply Weighting?: YES Energy Column: PI
 Energy Bins:
/local/data/gcn3a/caldb/data/swift/bat/bat_ebounds4-2003-08-
19.fits
 Output Units: RATE
 Binning Method: UNIFORM
 Time Bin Size: 0.064000 (s)
--
 Light curve written to sw00074651000bgrb.4lc
 EBOUNDS written to sw00074651000bgrb.4lc
 Number of Rows Processed: 5861791
 Number Accepted/Rejected: 5102226/759565
 Time Bins: 6557 Energy Bins: 4
--

(8. Create an eighty-channel PHA file from the event file)

batbinevt sw00074651000bgrb.unf sw00074651000bgrb.pha PHA 0 u
/local/data/gcn3a/caldb/data/swift/bat/bat_ebounds80-2003-08-
19.fits tstart=101807671.616000 tstop=101807672.640000 clobber=yes
**
 batbinevt v1.3
--
 Input Events: sw00074651000bgrb.unf
 Output File: sw00074651000bgrb.pha (PHA)
 Detector Mask: NONE
 Time Range: 101807671.616000 to 101807672.640000
(requested)
 Time Range: 101807671.616000 to 101807672.640000 (actual)
Apply Weighting?: YES Energy Column: PI
 Energy Bins:
/local/data/gcn3a/caldb/data/swift/bat/bat_ebounds80-2003-08-

84

19.fits
 Output Units: RATE
 Binning Method: UNIFORM
 Time Bin Size: 0.000000 (s)
--
 Spectrum written to sw00074651000bgrb.pha
 EBOUNDS written to sw00074651000bgrb.pha
 Number of Rows Processed: 5861791
 Number Accepted/Rejected: 16726/5845065
 Time Bins: 1 Energy Bins: 80
--

85

